根據(jù)我國發(fā)布的《環(huán)境空氣質(zhì)量指數(shù)技術(shù)規(guī)定》 (試行),共分為六級:為優(yōu),為良,為輕度污染,為中度污染,,均為重度污染,及以上為嚴(yán)重污染.某市2013年11月份天的的頻率分布直方圖如圖所示:

(1)該市11月份環(huán)境空氣質(zhì)量優(yōu)或良的共有多少天?
(2)若采用分層抽樣方法從天中抽取天進(jìn)行市民戶外晨練人數(shù)調(diào)查,則中度污染被抽到的天數(shù)共有多少天?
(3)空氣質(zhì)量指數(shù)低于時市民適宜戶外晨練,若市民王先生決定某天早晨進(jìn)行戶外晨練,則他當(dāng)天適宜戶外晨練的概率是多少?

⑴6;⑵3;⑶0.6.

解析試題分析:(1)由題意知樣本容量為30,由頻率分布直方圖求出環(huán)境空氣質(zhì)量優(yōu)或良的概率,可求得11月份環(huán)境空氣質(zhì)量優(yōu)或良的天數(shù);(2)求出中度污染的概率,算出11月份30天中中度污染的天數(shù),進(jìn)而可求中度污染被抽到的天數(shù);(3)空氣質(zhì)量指數(shù)低于150的,在頻率分布直方圖中有三個小矩形,求出前三個小矩形的面積和即可.
試題解析:(1)∵11月份共30天,∴由題意知樣本容量為30.
∵環(huán)境空氣質(zhì)量優(yōu)或良的概率為(0.002+0.002)×50=0.2,
∴該市11月份環(huán)境空氣質(zhì)量優(yōu)或良的共有0.2×30=6天.
(2)∵中度污染的概率為0.006×50=0.3,∴11月份30天中由9天是中度污染.
又每一天被抽到的概率相等,∴抽取10天,中度污染被抽到的天數(shù)共有0.3×10=3天.
(3)設(shè)“市民王先生當(dāng)天適宜戶外晨練”為事件A,則
考點(diǎn):1、古典概型及其概率計算公式;2、頻率分布直方圖;3、分層抽樣.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計的數(shù)據(jù)得到的頻率分布直方圖如圖所示,在其右面的表是年齡的頻率分布表。

(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動,求恰有1 人在第3組的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

想象一下一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)的散點(diǎn)圖,這些點(diǎn)將不會落在一條直線上,但在一段時間內(nèi)的增長數(shù)據(jù)有時可以用線性回歸來分析,下表是一位母親給兒子做的成長記錄:

年齡/周歲
3
4
5
6
7
8
9
身高/cm
91.8
97.6
104.2
110.9
115.6
122.0
128.5
 
年齡/周歲
10
11
12
13
14
15
16
身高/cm
134.2
140.8
147.6
154.2
160.9
167.5
173.0
(1)年齡(解釋變量)和身高(預(yù)報變量)之間具有怎樣的相關(guān)關(guān)系?
(2)如果年齡相差5歲,則身高有多大差異(3~16歲之間)?
(3)如果身高相差20 cm,其年齡相差多少(3~16歲之間)?
(4)計算殘差,說明該函數(shù)模型是否能夠較好地反映年齡與身高的關(guān)系,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的莖葉圖記錄了甲、乙兩組各四名同學(xué)的投籃命中次數(shù),乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以表示.

(1)如果乙組同學(xué)投籃命中次數(shù)的平均數(shù)為,求及乙組同學(xué)投籃命中次數(shù)的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名,求這兩名同學(xué)的投籃命中次數(shù)之和為17的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線
性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知某山區(qū)小學(xué)有100名四年級學(xué)生,將全體四年級學(xué)生隨機(jī)按00~99編號,并且按編號順序平均分成10組.現(xiàn)要從中抽取10名學(xué)生,各組內(nèi)抽取的編號按依次增加10進(jìn)行系統(tǒng)抽樣.

(1)若抽出的一個號碼為22,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號碼;
(2)分別統(tǒng)計這10名學(xué)生的數(shù)學(xué)成績,獲得成績數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學(xué)生中隨機(jī)抽取兩名成績不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績之和不小于154分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從一批蘋果中,隨機(jī)抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

分組(重量)




頻數(shù)(個)
5
10
20
15
(1)根據(jù)頻數(shù)分布表計算蘋果的重量在的頻率;
(2)用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?
(3)在(2)中抽出的4個蘋果中,任取2個,求重量在中各有1個的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)高一女生共有450人,為了了解高一女生的身高情況,隨機(jī)抽取部分高一女生測量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:

組別
頻數(shù)
頻率
145.5~149.5
8
0.16
149.5~153.5
6
0.12
153.5~157.5
14
0.28
157.5~161.5
10
0.20
161.5~165.5
8
0.16
165.5~169.5


合計


(1)求出表中字母所對應(yīng)的數(shù)值;
(2)在給出的直角坐標(biāo)系中畫出頻率分布直方圖;
(3)估計該校高一女生身高在149.5~165.5范圍內(nèi)有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖所示.
 
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班樣本的方差.

查看答案和解析>>

同步練習(xí)冊答案