數(shù)列{xn}的通項(xiàng)xn=(-1)n+1,前n項(xiàng)和為Sn,則=______

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1為正實(shí)數(shù).
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,記an=lg
xn+2xn-2
,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意函數(shù)f(x),x∈D,可按圖構(gòu)造一個(gè)數(shù)列發(fā)生器.記由數(shù)列發(fā)生器產(chǎn)生數(shù)列{xn}.
(Ⅰ)若定義函數(shù)f(x)=
4x-2
x+1
,且輸入x0=
49
65
,請(qǐng)寫(xiě)出數(shù)列{xn}的所有項(xiàng);
(Ⅱ)若定義函數(shù)f(x)=2x+3,且輸入x0=-1,求數(shù)列{xn}的通項(xiàng)公式xn
(Ⅲ)若定義函數(shù)f(x)=xsinx(0≤x≤2π),且要產(chǎn)生一個(gè)無(wú)窮的常數(shù)列{xn},試求輸入的初始數(shù)據(jù)x0的值及相應(yīng)數(shù)列{xn}的通項(xiàng)公式xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在xoy平面上有一系列點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對(duì)每個(gè)正整數(shù)n,以點(diǎn)Pn為圓心的⊙Pn與x軸及射線y=
3
x,(x≥0)都相切,且⊙Pn與⊙Pn+1彼此外切.若x1=1,且xn+1<xn(n∈N*).
(1)求證:數(shù)列{xn}是等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的各項(xiàng)為正,且滿足an
xnan-1
xn+an-1
,a1
=1,
求證:a1x1+a2x2+a3x3+…+anxn
5
4
-
1
3n-1
,(n≥2)
(3)對(duì)于(2)中的數(shù)列{an},當(dāng)n>1時(shí),求證:(1-an)2[
a
2
2
(1-
a
2
2
)
2
+
a
3
3
(1-
a
3
3
)
2
+…+
a
n
n
(1-
a
n
n
)
2
]>
4
5
-
1
1+an+
a
2
n
+…+
a
n
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•石景山區(qū)一模)已知函數(shù)y=f(x)對(duì)于任意θ≠
2
(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a為常數(shù)).
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列,方法如下:
對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造過(guò)程中,如果xi(i=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;如果xi不在定義域中,那么構(gòu)造數(shù)列的過(guò)程就停止.
(。┤绻梢杂蒙鲜龇椒(gòu)造出一個(gè)常數(shù)列,求a的取值范圍;
(ⅱ)是否存在一個(gè)實(shí)數(shù)a,使得取定義域中的任一值作為x1,都可用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn}?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由;
(ⅲ)當(dāng)a=1時(shí),若x1=-1,求數(shù)列{xn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:已知曲線C:在點(diǎn)P(1,1)處的切線與x軸交于點(diǎn)Q1,再過(guò)Q1點(diǎn)作x軸的垂線交曲線C于點(diǎn)P1,再過(guò)P1作C的切線與x軸交于點(diǎn)Q2,依次重復(fù)下去,過(guò)Pn(xn,yn)作C的切線與x軸交于點(diǎn)Qn(xn+1,O).
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)求△OPnPn+1的面積;
(3)設(shè)直線OPn的斜率為kn,求數(shù)列nkn的前n項(xiàng)和Sn,并證明Sn
79

查看答案和解析>>

同步練習(xí)冊(cè)答案