【題目】已知函數(shù)

(Ⅰ)若 ,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對任意 都有恒成立,求實(shí)數(shù) 的取值范圍;

(Ⅲ)設(shè)函數(shù) ,求證:

【答案】1上遞增;(2;(3)證明見解析.

【解析】試題分析:(1)由于,導(dǎo)函數(shù)的零點(diǎn)不能直接求出,考慮二次求導(dǎo),求出的最值,從而判斷出函數(shù)的單調(diào)性;(2)由題意可知當(dāng)時(shí),,可通過討論研究導(dǎo)函數(shù)的單調(diào)性和最值,得到的最小值,得到參數(shù)的取值范圍;(3)由題意可得,可考慮證明兩個(gè)和為的自變量對應(yīng)的函數(shù)值的積為定值,通過整理并放縮可實(shí)現(xiàn)上述設(shè)想,最終得證.

試題解析:(1),,,

則當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增.

所以有,所以

(2)當(dāng)時(shí),,,,單調(diào)遞增,

當(dāng)時(shí),,成立;

當(dāng)時(shí),存在,使,,則當(dāng)時(shí),,不合題意.綜上

(3,

,……,

由此得,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB.
(Ⅰ)證明:A=2B
(Ⅱ)若△ABC的面積S= ,求角A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取5次,記錄如下:

88

89

92

90

91

84

88

96

89

93

(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由.(用樣本數(shù)據(jù)特征來說明.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中是自然對數(shù)的底數(shù).

(Ⅰ)判斷函數(shù)內(nèi)零點(diǎn)的個(gè)數(shù),并說明理由;

(Ⅱ),,使得不等式成立,試求實(shí)數(shù)的取值范圍;

(Ⅲ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點(diǎn)A(1,0),D(﹣1,0),點(diǎn)B,C在單位圓O上,且∠BOC=
(Ⅰ)若點(diǎn)B( , ),求cos∠AOC的值;
(Ⅱ)設(shè)∠AOB=x(0<x< ),四邊形ABCD的周長為y,將y表示成x的函數(shù),并求出y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2 , 若對任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實(shí)數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中 ①若loga3>logb3,則a>b;
②函數(shù)f(x)=x2﹣2x+3,x∈[0,+∞)的值域?yàn)閇2,+∞);
③設(shè)g(x)是定義在區(qū)間[a,b]上的連續(xù)函數(shù).若g(a)=g(b)>0,則函數(shù)g(x)無零點(diǎn);
④函數(shù) 既是奇函數(shù)又是減函數(shù).
其中正確的命題有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn),記過點(diǎn)的直線的斜率為,問:是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.

(1)若直線與曲線交于兩點(diǎn),求的值;

(2)設(shè)曲線的內(nèi)接矩形的周長為,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案