【題目】已知函數(shù)
(Ⅰ)若 ,求函數(shù)的單調區(qū)間;
(Ⅱ)若對任意 都有恒成立,求實數(shù) 的取值范圍;
(Ⅲ)設函數(shù) ,求證:
.
【答案】(1)在上遞增;(2);(3)證明見解析.
【解析】試題分析:(1)由于,導函數(shù)的零點不能直接求出,考慮二次求導,求出的最值,從而判斷出函數(shù)的單調性;(2)由題意可知當時,,可通過討論研究導函數(shù)的單調性和最值,得到的最小值,得到參數(shù)的取值范圍;(3)由題意可得,可考慮證明兩個和為的自變量對應的函數(shù)值的積為定值,通過整理并放縮可實現(xiàn)上述設想,最終得證.
試題解析:(1),令,則,
則當時,單調遞減,當時,單調遞增.
所以有,所以
(2)當時,,令,則,則單調遞增,
當即時,,成立;
當時,存在,使,則減,則當時,,不合題意.綜上
(3),
,
,……,.
由此得,
故()
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB.
(Ⅰ)證明:A=2B
(Ⅱ)若△ABC的面積S= ,求角A的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩位學生參加數(shù)學競賽培訓.現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取5次,記錄如下:
甲 | 88 | 89 | 92 | 90 | 91 |
乙 | 84 | 88 | 96 | 89 | 93 |
(Ⅰ)用莖葉圖表示這兩組數(shù)據;
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學競賽,你認為選派哪位學生參加合適?請說明理由.(用樣本數(shù)據特征來說明.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中是自然對數(shù)的底數(shù).
(Ⅰ)判斷函數(shù)在內零點的個數(shù),并說明理由;
(Ⅱ),,使得不等式成立,試求實數(shù)的取值范圍;
(Ⅲ)若,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知點A(1,0),D(﹣1,0),點B,C在單位圓O上,且∠BOC= .
(Ⅰ)若點B( , ),求cos∠AOC的值;
(Ⅱ)設∠AOB=x(0<x< ),四邊形ABCD的周長為y,將y表示成x的函數(shù),并求出y的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在R上的奇函數(shù),且當x≥0時,f(x)=x2 , 若對任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中 ①若loga3>logb3,則a>b;
②函數(shù)f(x)=x2﹣2x+3,x∈[0,+∞)的值域為[2,+∞);
③設g(x)是定義在區(qū)間[a,b]上的連續(xù)函數(shù).若g(a)=g(b)>0,則函數(shù)g(x)無零點;
④函數(shù) 既是奇函數(shù)又是減函數(shù).
其中正確的命題有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
(1)討論函數(shù)的單調性;
(2)若有兩個極值點,記過點的直線的斜率為,問:是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.
(1)若直線與曲線交于兩點,求的值;
(2)設曲線的內接矩形的周長為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com