求證:拋物線y=上不存在關(guān)于直線x+y=0對稱的兩點(diǎn).

答案:
解析:

  證明:假設(shè)拋物線y=上存在兩點(diǎn)P、Q關(guān)于直線x+y=0對稱,設(shè)P(x0,y0),則Q(-y0,-x0),且x0+y0≠0則有

  

 、伲诘茫簒0-y0=2,

  即y0=x0-2  ③

  將③代入①得:

  -2x0+2=0,

  因?yàn)?FONT FACE="Times New Roman">Δ=22-4×2<0,

  故此方程無實(shí)數(shù)根,與x0為實(shí)數(shù)矛盾.

  因此,拋物線y=上不存在關(guān)于直接x+y=0對稱的兩點(diǎn).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:山東省聊城市2007年高考模擬試題數(shù)學(xué)理科 題型:044

如圖,已知圓O:x2+y2=4與y軸正半軸交于點(diǎn)P,A(-1,0),B(1,0),直線l與圓O切于點(diǎn)S(l不垂直于x軸),拋物線過A、B兩點(diǎn)且以l為準(zhǔn)線.

(Ⅰ)當(dāng)點(diǎn)S在圓周上運(yùn)動(dòng)時(shí),求證:拋物線的焦點(diǎn)Q始終在某一橢圓C上,并求出該橢圓C的方程;

(Ⅱ)設(shè)M、N是(Ⅰ)中橢圓C上除短軸端點(diǎn)外的不同兩點(diǎn),且,問:△MON的面積是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省嘉興市第一中學(xué)2011-2012學(xué)年高二下學(xué)期摸底試卷數(shù)學(xué)文科試題 題型:044

過x軸上動(dòng)點(diǎn)A(a,0)引拋物線y=x2+1的兩條切線AP、AQ,P、Q為切點(diǎn),設(shè)切線AP,AQ的斜率分別為k1和k2

(1)求證:k1k2=-4;

(2)試問:直線PQ是否經(jīng)過定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo);若不是,請說明理由.

(3)設(shè)△APQ的面積為S,當(dāng)最小時(shí),求·的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:吉林省東北師大附中2009屆高三第三次摸底考試(數(shù)學(xué)理) 題型:044

已知拋物線x2=4y,過定點(diǎn)M0(0,m)(m>0)的直線l交拋物線于A、B兩點(diǎn).

(Ⅰ)分別過A、B作拋物線的兩條切線,A、B為切點(diǎn),求證:這兩條切線的交點(diǎn)P(x0,y0)在定直線y=-m上.

(Ⅱ)當(dāng)m>2時(shí),在拋物線上存在不同的兩點(diǎn)P、Q關(guān)于直線l對稱,弦長|PQ|中是否存在最大值?若存在,求其最大值(用m表示),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試(山東卷)、數(shù)學(xué)(理科)試卷 題型:044

如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點(diǎn),過M引拋物線的切線,切點(diǎn)分別為A,B.

(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),求此時(shí)拋物線的方程;

(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對稱點(diǎn)D在拋物線x2=2py(p>0)上,其中點(diǎn)C滿足(O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案