已知函數(shù),令,則二項(xiàng)式展開式中常數(shù)項(xiàng)是第 ____________項(xiàng).

 

【答案】

5

【解析】因?yàn)楹瘮?shù),令,則二項(xiàng)式展開式中常數(shù)項(xiàng)是第5 項(xiàng).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).
(1)求函數(shù)f(x)的表達(dá)式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)在各項(xiàng)均不為零的數(shù)列{cn}中,若ci•ci+1<0,則稱ci,ci+1為這個(gè)數(shù)列{cn}一對(duì)變號(hào)項(xiàng).令cn=1-
aan
(n為正整數(shù)),求數(shù)列{cn}的變號(hào)項(xiàng)的對(duì)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

(2009•金山區(qū)二模)設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請(qǐng)先閱讀下列材料,然后回答問題.
材料:已知函數(shù)g(x)=-
1
f(x)
,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個(gè)同學(xué)給出了如下解答:
解:令u=-f(x)=-x2-x,則u=-(x+
1
2
2+
1
4
,
當(dāng)x=-
1
2
時(shí),u有最大值,umax=
1
4
,顯然u沒有最小值,
∴當(dāng)x=-
1
2
時(shí),g(x)有最小值4,沒有最大值.
請(qǐng)回答:上述解答是否正確?若不正確,請(qǐng)給出正確的解答;
(3)設(shè)an=
f(n)
2n-1
,請(qǐng)?zhí)岢龃藛栴}的一個(gè)結(jié)論,例如:求通項(xiàng)an.并給出正確解答.
注意:第(3)題中所提問題單獨(dú)給分,.解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時(shí)提出兩個(gè)問題,則就高不就低,解答也相同處理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)已知二次函數(shù)f (x) = x2 ??ax + a (x∈R)同時(shí)滿足:①不等式 f (x) ≤ 0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0 < x1 < x2,使得不等式f (x1) > f (x2)成立.設(shè)數(shù)列{an}的前 n 項(xiàng)和Sn = f (n).(1)求函數(shù)f (x)的表達(dá)式;(2)求數(shù)列{an}的通項(xiàng)公式;(3)在各項(xiàng)均不為零的數(shù)列{cn}中,若ci·ci+1 < 0,則稱ci,ci+1為這個(gè)數(shù)列{cn}一對(duì)變號(hào)項(xiàng).令cn = 1 ?? (n為正整數(shù)),求數(shù)列{cn}的變號(hào)項(xiàng)的對(duì)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年貴州省黔西南州興義市天賦中學(xué)高三(上)第五次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).
(1)求函數(shù)f(x)的表達(dá)式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)在各項(xiàng)均不為零的數(shù)列{cn}中,若ci•ci+1<0,則稱ci,ci+1為這個(gè)數(shù)列{cn}一對(duì)變號(hào)項(xiàng).令(n為正整數(shù)),求數(shù)列{cn}的變號(hào)項(xiàng)的對(duì)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)第三輪復(fù)習(xí)精編模擬試卷09(理科)(解析版) 題型:解答題

已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).
(1)求函數(shù)f(x)的表達(dá)式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)在各項(xiàng)均不為零的數(shù)列{cn}中,若ci•ci+1<0,則稱ci,ci+1為這個(gè)數(shù)列{cn}一對(duì)變號(hào)項(xiàng).令(n為正整數(shù)),求數(shù)列{cn}的變號(hào)項(xiàng)的對(duì)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案