不等式4<|3x-2|<8的解集為____________.

思路解析:本題是由兩個絕對值不等式構(gòu)成的不等式組,可分別解出其解集,然后取交集即可.

解法一:由4<|3x-2|<8,得

∴-2<x<-或2<x<.

∴原不等式的解集為{x|-2<x<-或2<x<}

解法二:由4<|3x-2|<8,得

4<3x-2<8或-8<3x-2<-4.

解之得2<x<或-2<x<-.

∴原不等式的解集為{x|2<x<或-2<x<-}.

答案:{x|-2<x<-或2<x<}.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)經(jīng)過點(2,
12
)
,
(1)試求函數(shù)解析式;
(2)判斷函數(shù)的奇偶性并寫出函數(shù)的單調(diào)區(qū)間;
(3)試解關(guān)于x的不等式f(3x+2)+f(2x-4)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x)滿足:①?x,y∈(-∞,0)∪(0,+∞),f(x•y)=f(x)+f(y);②當(dāng)x>1時,f(x>0),且f(2)=1.
(1)試判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(3)求函數(shù)f(x)在區(qū)間[-4,0)∪(0,4]上的最大值;
(4)求不等式f(3x-2)+f(x)≥4的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2-3x+m<0的解集為{x|1<x<n,n∈R},函數(shù)f(x)=-x2+ax+4.
(1)求m,n的值;
(2)若y=f(x)在(-∞,1]上遞增,解關(guān)于x的不等式loga(-nx2+3x+2-m)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山東省聊城一中高三模塊測試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x)滿足:①?x,y∈(-∞,0)∪(0,+∞),f=f(x)+f(y);②當(dāng)x>1時,f(x>0),且f(2)=1.
(1)試判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(3)求函數(shù)f(x)在區(qū)間[-4,0)∪(0,4]上的最大值;
(4)求不等式f(3x-2)+f(x)≥4的解集.

查看答案和解析>>

同步練習(xí)冊答案