在二項式(
3x
-
1
2
3x
)n
的展開式中,前三項系數(shù)的絕對值成等差數(shù)列.
(1)求展開式的第四項;
(2)求展開式的常數(shù)項;
(3)求展開式中各項的系數(shù)和;
(4)求展開式的有理項.
因為第一、二、三項系數(shù)的絕對值分別為Cn0,
1
2
C1n
1
4
C2n

Cn0
+
1
4
Cn2
= 2×
1
2
Cn1

∴n2-9n+8=0
解得n=8.
(1)第四項 T4=
C38
(
3x
)
5
 (-
1
2
3x
)
3
=-7 x
2
3

(2)通項公式為 Tr+1=
Cr8
(-
1
2
)
r
x
8-2r
3
,
8-2r
3
=0
,得r=4
所以展開式中的常數(shù)項為 T5=
C48
(-
1
2
)
4
=
35
8

(3)令二項式中的x=1,則有展開式中各項的系數(shù)和為(1-
1
2
)
8
=(
1
2
)8
…(10分)
(4)通項公式為 Tr+1=
Cr8
(-
1
2
)
r
x
8-2r
3
,考察x的指數(shù)知,r=1,4,7時,x的指數(shù)為整數(shù),即:
T2=-4x2,T5=
35
8
T8=-
1
16x2
此三項為展開式中的有理項…(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在二項式(
3x
-
1
2
3x
)n
的展開式中,前三項系數(shù)的絕對值成等差數(shù)列.
(1)求展開式的第四項;
(2)求展開式的常數(shù)項;
(3)求展開式中各項的系數(shù)和;
(4)求展開式的有理項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二項式(
3x
-
1
2
3x
)n
的展開式中,前三項系數(shù)的絕對值成等差數(shù)列
(1)求n的值;
(2)求展開式中二項式系數(shù)最大的項;
(3)求展開式中項的系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二項式(
3x
-
1
2
3x
)n
的展開式中,前三項系數(shù)的絕對值成等差數(shù)列.
(1)求展開式的常數(shù)項;
(2)求展開式中各項的系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二項式(
3x
-
1
2
3x
)
n
的展開式中,前三項系數(shù)的絕對值成等差數(shù)列
(1)求展開式的常數(shù)項; 
(2)求展開式中二項式系數(shù)最大的項;
(3)求展開式中各項的系數(shù)和.

查看答案和解析>>

同步練習(xí)冊答案