已知函數(shù)f(x)=ax2+bx-1(a,b∈R且a>0)有兩個(gè)零點(diǎn),其中一個(gè)零點(diǎn)在區(qū)間(1,2)內(nèi),則a-b的取值范圍是( )
A.(-1,1)
B.(-1,+∞)
C.(-2,1)
D.(-2,+∞)
【答案】分析:由題意知,一個(gè)根在區(qū)間(1,2)內(nèi),得關(guān)于a,b的等式,再利用線性規(guī)劃的方法求出a-b的取值范圍.
解答:解:設(shè)f(x)=ax2+bx-1=0,由題意得,f(1)<0,f(2)>0,
∴a+b-1<0,4a+2b-1>0.且a>0.
,視a,b為變量,作出可行域如圖.
令a-b=t,
∴當(dāng)直線a-b=t過(guò)A點(diǎn)(0,1)時(shí),t最小是-1,無(wú)最大值
∴-1<t.
故選B.
點(diǎn)評(píng):線性規(guī)劃的介入,為研究函數(shù)的最值或最優(yōu)解提供了新的方法,借助于平面區(qū)域特性,用幾何方法處理代數(shù)問(wèn)題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案