已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),
(1)求當(dāng)時(shí)的解析式;
(2)試確定函數(shù)的單調(diào)區(qū)間,并證明你的結(jié)論;
(3)若,證明:.

(1) 
(2)函數(shù)上為減函數(shù),在上為增函數(shù).
(3)證明見解析

(1)若,則, ∵函數(shù)是定義在上的偶函數(shù),
    ----------3分
(2)當(dāng)時(shí),.   --------------6分
顯然當(dāng)時(shí),;當(dāng)時(shí),,又處連續(xù),
∴函數(shù)上為減函數(shù),在上為增函數(shù).   -----------8分
(3)∵函數(shù)上為增函數(shù),且,
∴當(dāng)時(shí),有,------------------10分
又當(dāng)時(shí),得,即
  即得.    ----------12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在一個(gè)圓形波浪實(shí)驗(yàn)水池的中心有三個(gè)振動(dòng)源,假如不計(jì)其它因素,在t秒內(nèi),它們引發(fā)的水面波動(dòng)可分別由函數(shù)描述。如果兩個(gè)振動(dòng)源同時(shí)啟動(dòng),則水面波動(dòng)由兩個(gè)函數(shù)的和表達(dá)。在某一時(shí)刻使這三個(gè)振動(dòng)源同時(shí)開始工作,那么,原本平靜的水面將呈現(xiàn)怎樣的狀態(tài),請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)滿足,函數(shù)滿足 ,且對(duì)任意>0,且
(1)求證:
(2)設(shè)的反函數(shù)為,當(dāng)時(shí),試比較的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù).
(1)若,試判斷函數(shù)零點(diǎn)個(gè)數(shù);
(2)若對(duì),,試證明,使成立。
(3)是否存在,使同時(shí)滿足以下條件①對(duì),且;②對(duì),都有。若存在,求出的值,若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(Ⅰ)已知函數(shù):求函數(shù)的最小值;
(Ⅱ)證明:;
(Ⅲ)定理:若 均為正數(shù),則有 成立(其中.請(qǐng)你構(gòu)造一個(gè)函數(shù),證明:
當(dāng)均為正數(shù)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若存在實(shí)常數(shù),使得函數(shù)對(duì)其定義域上的任意實(shí)數(shù)分別滿足:,則稱直線的“隔離直線”.已知,(其中為自然對(duì)數(shù)的底數(shù)),根據(jù)你的數(shù)學(xué)知識(shí),推斷間的隔離直線方程為                 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商品一年內(nèi)出廠價(jià)格在6元的基礎(chǔ)上按月份隨正弦曲線波動(dòng),已知3月份達(dá)到最高價(jià)格8元,7月份價(jià)格最低為4元,該商品在商店內(nèi)的銷售價(jià)格在8元基礎(chǔ)上按月份隨正弦曲線波動(dòng),5月份銷售價(jià)格最高為10元,9月份銷售價(jià)最低為6元,假設(shè)商店每月購進(jìn)這種商品m件,且當(dāng)月銷完,你估計(jì)哪個(gè)月份盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)在定義域內(nèi)是增函數(shù)還是減函數(shù)?請(qǐng)說明理由;
(3)已知,解關(guān)于不等式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題





(1)求的解析式;
(2) 當(dāng)時(shí),不等式:恒成立,求實(shí)數(shù)的范圍.
(3)設(shè),求的最大值;

查看答案和解析>>

同步練習(xí)冊(cè)答案