【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=2x2+(x﹣a)|x﹣a|.
(1)若f(0)≥1,求a的取值范圍;
(2)求f(x)的最小值;
(3)設(shè)函數(shù)h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.
【答案】
(1)解:若f(0)≥1,則﹣a|a|≥1 a≤﹣1
(2)解:當(dāng)x≥a時(shí),f(x)=3x2﹣2ax+a2,∴ ,
如圖所示:
當(dāng)x≤a時(shí),f(x)=x2+2ax﹣a2,
∴ .
綜上所述: .
(3)解:x∈(a,+∞)時(shí),h(x)≥1,
得3x2﹣2ax+a2﹣1≥0,△=4a2﹣12(a2﹣1)=12﹣8a2
當(dāng)a≤﹣ 或a≥ 時(shí),△≤0,x∈(a,+∞);
當(dāng)﹣ <a< 時(shí),△>0,得:
即
進(jìn)而分2類討論:
當(dāng)﹣ <a<﹣ 時(shí),a< ,
此時(shí)不等式組的解集為(a, ]∪[ ,+∞);
當(dāng)﹣ ≤x≤ 時(shí), <a< ;
此時(shí)不等式組的解集為[ ,+∞).
綜上可得,
當(dāng)a∈(﹣∞,﹣ )∪( ,+∞)時(shí),不等式組的解集為(a,+∞);
當(dāng)a∈(﹣ ,﹣ )時(shí),不等式組的解集為(a, ]∪[ ,+∞);
當(dāng)a∈[﹣ , ]時(shí),不等式組的解集為[ ,+∞)
【解析】(1)f(0)≥1﹣a|a|≥1再去絕對值求a的取值范圍,(2)分x≥a和x<a兩種情況來討論去絕對值,再對每一段分別求最小值,借助二次函數(shù)的對稱軸及單調(diào)性.最后綜合即可.(3)h(x)≥1轉(zhuǎn)化為3x2﹣2ax+a2﹣1≥0,因?yàn)椴坏仁降慕饧蓪?yīng)方程的根決定,所以再對其對應(yīng)的判別式分三種情況討論求得對應(yīng)解集即可.
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)和解一元二次不等式是解答本題的根本,需要知道當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減;求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應(yīng)值如下表:
x | |||||||
y | ﹣1 | 1 | 3 | 1 | ﹣1 | 1 | 3 |
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個(gè)解析式.
(2)根據(jù)(1)的結(jié)果,若函數(shù)y=f(kx)(k>0)周期為 ,當(dāng) 時(shí),方程f(kx)=m恰有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空間四邊形ABCD中,AB=CD且異面直線AB與CD所成的角為30°,E,F(xiàn)為BC和AD的中點(diǎn),則異面直線EF和AB所成的角為( )
A.15°
B.30°
C.45°或75°
D.15°或75°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應(yīng)值如下表:
x | |||||||
y | ﹣1 | 1 | 3 | 1 | ﹣1 | 1 | 3 |
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個(gè)解析式.
(2)根據(jù)(1)的結(jié)果,若函數(shù)y=f(kx)(k>0)周期為 ,當(dāng) 時(shí),方程f(kx)=m恰有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)=x2﹣2x,g(x)=ax+2(a>0),若對任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),則a的取值范圍是( )
A.
B.
C.[3,+∞)
D.(0,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣4x﹣6y+12=0,點(diǎn)A(3,5).
(1)求過點(diǎn)A的圓的切線方程;
(2)O點(diǎn)是坐標(biāo)原點(diǎn),連接OA,OC,求△AOC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( )
A.若 與 互為負(fù)向量,則 + =0
B.若 =0,則 = 或 =
C.若 , 都是單位向量,則 =1
D.若k為實(shí)數(shù)且k = ,則k=0或 =
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省的一個(gè)氣象站觀測點(diǎn)在連續(xù)4天里記錄的指數(shù)與當(dāng)天的空氣水平可見度(單位: )的情況如表1:
700 | ||||
0.5 | 3.5 | 6.5 | 9.5 |
該省某市2017年9月指數(shù)頻數(shù)分布如表2:
頻數(shù) | 3 | 6 | 12 | 6 | 3 |
(1)設(shè),根據(jù)表1的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)小李在該市開了一家洗車店,經(jīng)統(tǒng)計(jì),洗車店平均每天的收入與指數(shù)有相關(guān)關(guān)系,如表3:
日均收入(元) |
根據(jù)表3估計(jì)小李的洗車店9月份平均每天的收入.
(附參考公式: ,其中, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com