17.要得到函數(shù)y=$\frac{\sqrt{3}}{2}$sin2x+cos2x-$\frac{1}{2}$的圖象,只需將y=sinx圖象上所有的點(diǎn)( 。
A.橫坐標(biāo)變?yōu)樵瓉?lái)的一半,縱坐標(biāo)不變,再向左平移$\frac{π}{6}$個(gè)單位
B.橫坐標(biāo)變?yōu)樵瓉?lái)的兩倍,縱坐標(biāo)不變,再向左平移$\frac{π}{12}$個(gè)單位
C.向左平移$\frac{π}{12}$個(gè)單位,再將所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的兩倍,縱坐標(biāo)不變
D.向左平移$\frac{π}{6}$個(gè)單位,再將所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的一半,縱坐標(biāo)不變

分析 利用三角恒等變換化簡(jiǎn)原函數(shù)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得平移后所得函數(shù)的解析式.

解答 解:∵函數(shù)y=$\frac{\sqrt{3}}{2}$sin2x+cos2x-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x=sin(2x+$\frac{π}{6}$),
故只需將y=sinx圖象上所有的點(diǎn)向左平移$\frac{π}{6}$個(gè)單位,可得y=sin(x+$\frac{π}{6}$)的圖象;
再將所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的一半,縱坐標(biāo)不變,可得y=sin(2x+$\frac{π}{6}$) 的圖象,
故選:D.

點(diǎn)評(píng) 本題主要考查三角恒等變換,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{x-2}{x+2}$ex
(Ⅰ)確定函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:函數(shù)g(x)=$\frac{2{e}^{x}-x-1}{2{x}^{2}}$在(0,+∞)上存在最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖所示是沿圓錐的兩條母線將圓錐削去一部分后得幾何體的三視圖,其體積為$\frac{16π}{9}+\frac{2\sqrt{3}}{3}$,則圓錐的母線長(zhǎng)為(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4D.$\sqrt{2}+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.集合A={x|2x2-3x≤0,x∈Z},B={x|1≤2x<32,x∈Z},集合C滿足A⊆C?B,則C的個(gè)數(shù)為( 。
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)a,b∈R,則“$\frac{{a}^{2}}{a-b}$<0”是“a<b”的( 。l件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在下列各圖中,相關(guān)關(guān)系最強(qiáng)的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)y=2x3-x+4在點(diǎn)(-$\frac{1}{2}$,$\frac{17}{4}$)處的切線的斜率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直線x=x1,x=x2是y=f(x)圖象的任意兩條對(duì)稱軸,且|x1-x2|的最小值為$\frac{π}{4}$.
(1)求f(x)的表達(dá)式;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若a<b<0,則下列不等中不成立的是( 。
A.|a|>|b|B.$\frac{1}{a+b}>\frac{1}{a}$C.$\frac{1}>\frac{1}{a}$D.a2>b2

查看答案和解析>>

同步練習(xí)冊(cè)答案