【題目】如圖,在直三棱柱中,分別為,的中點,,.
(1)求證:;
(2)若直線和平面所成角的正弦值等于,求二面角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查高中生的數(shù)學成績與學生自主學習時間之間的相關(guān)關(guān)系,新苗中學數(shù)學教師對新入學的名學生進行了跟蹤調(diào)查,其中每周自主做數(shù)學題的時間不少于小時的有人,余下的人中,在高三模擬考試中數(shù)學成績不足分的占,統(tǒng)計成績后,得到如下的列聯(lián)表:
分數(shù)大于等于分 | 分數(shù)不足分 | 合計 | |
周做題時間不少于小時 | 4 | 19 | |
周做題時間不足小時 | |||
合計 | 45 |
()請完成上面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認為“高中生的數(shù)學成績與學生自主學習時間有關(guān)”.
()(i)按照分層抽樣的方法,在上述樣本中,從分數(shù)大于等于分和分數(shù)不足分的兩組學生中抽取名學生,設(shè)抽到的不足分且周做題時間不足小時的人數(shù)為,求的分布列(概率用組合數(shù)算式表示).
(ii)若將頻率視為概率,從全校大于等于分的學生中隨機抽取人,求這些人中周做題時間不少于小時的人數(shù)的期望和方差.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在等腰梯形ABCD中,,,E,F為AB的三等分點,且將和分別沿DE、CF折起到A、B兩點重合,記為點P.
證明:平面平面PEF;
若,求PD與平面PFC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)若a=2,△ABC的面積為,求C的大小。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司培訓員工某項技能,培訓有如下兩種方式:
方式一:周一到周五每天培訓1小時,周日測試
方式二:周六一天培訓4小時,周日測試
公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓;甲組選方式一,乙組選方式二,并記錄每周培訓后測試達標的人數(shù)如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進行培訓,分別估計員工受訓的平均時間精確到,并據(jù)此判斷哪種培訓方式效率更高?
在甲乙兩組中,從第三周培訓后達標的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為拋物線:的焦點,過的動直線交拋物線于,兩點.當直線與軸垂直時,.
(1)求拋物線的方程;
(2)設(shè)直線的斜率為1且與拋物線的準線相交于點,拋物線上存在點使得直線,,的斜率成等差數(shù)列,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“新車嗨翻天!首付3000元起開新車”這就是毛豆新車網(wǎng)打出來的廣告語.某人看到廣告,興奮不已,計劃于2019年1月在該網(wǎng)站購買一輛某品牌汽車,他從當?shù)亓私獾浇鍌月該品牌汽車實際銷量如表:
月份 | 2018.08 | 2018.09 | 2018.10 | 2018.11 | 2018.12 |
月份編號t | 1 | 2 | 3 | 4 | 5 |
銷量y(萬輛) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經(jīng)分析,可用線性回歸模型擬合當?shù)卦撈放破噷嶋H銷量y(萬輛)與月份編號t之間的相關(guān)關(guān)系.請用最小二乘法求y關(guān)于t的線性回歸方程,并估計2019年1月份該品牌汽車的銷量:
(2)為了增加銷量,廠家和毛豆新車網(wǎng)聯(lián)合推出對購該品牌車進行補貼.已知某地擬購買該品牌汽車的消費群體十分龐大,某調(diào)研機構(gòu)對其中的200名消費者的購車補貼金額的心理預期值進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
補貼金額預期值 區(qū)間(萬元) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) | [6,7) |
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
將頻率視為概率,現(xiàn)用隨機抽樣方法從該地區(qū)擬購買該品牌汽車的所有消費者中隨機抽取3人,記被抽取3人中對補貼金額的心理預期值不低于3萬元的人數(shù)為ξ,求ξ的分布列及數(shù)學期望E(ξ)
參考公式及數(shù)據(jù):①回歸方程,其中,;②.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:與橢圓交于A,B兩點,點P是橢圓C上異于A,B的一個動點,點Q在直線AB上,滿足(為坐標原點)
(1)求點Q的軌跡方程;
(2)求四邊形OAPB的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】光線被曲線反射,等效于被曲線在反射點處的切線反射.已知光線從橢圓的一個焦點出發(fā),被橢圓反射后要回到橢圓的另一個焦點;光線從雙曲線的一個焦點出發(fā)被雙曲線反射后的反射光線等效于從另一個焦點發(fā)出;如圖,橢圓與雙曲線(,)有公共焦點,現(xiàn)一光線從它們的左焦點出發(fā),在橢圓與雙曲線間連續(xù)反射,則光線經(jīng)過次反射后,首次回到左焦點所經(jīng)過的路徑長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com