精英家教網 > 高中數學 > 題目詳情
已知焦點在x軸上的橢圓C過點(0,1),且離心率為,Q為橢圓C的左頂點。
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知過點(,0)的直線l與橢圓C交于A,B兩點。
(。┤糁本了l垂直于x軸,求∠AQB的大小;
(ⅱ)若直線l與x軸不垂直,是否存在直線l使得△QAB為等腰三角形?如果存在,求出直線l的方程;如果不存在,請說明理由。

解:(Ⅰ)設橢圓C的標準方程為
,
由題意可知:
所以,
所以,橢圓C的標準方程為;
(Ⅱ)由(Ⅰ)得Q(-2,0),
,
(。┊斨本l垂直于x軸時,直線l的方程為

解得:
(不妨設點A在x軸上方),
則直線AQ的斜率,直線BQ的斜率,
因為
所以,
所以
(ⅱ)當直線l與x軸不垂直時,由題意可設直線AB的方程為,
消去y得:,
因為點在橢圓C的內部,顯然

因為,
所以



所以
所以為直角三角形,
假設存在直線l使得△QAB為等腰三角形,則
取AB的中點M,連接QM,則,
記點為N,
另一方面,點M的橫坐標,
所以點M的縱坐標,
所以

所以不垂直,矛盾,
所以當直線l與x軸不垂直時,不存在直線l使得△QAB為等腰三角形。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)如圖展示了一個由區(qū)間(0,k)(其中k為一正實數)到實數集R上的映射過程:區(qū)間(0,k)中的實數m對應線段AB上的點M,如圖1;將線段AB圍成一個離心率為
3
2
的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數m對應的實數就是n,記作f(m)=n,

現給出下列5個命題①f(
k
2
)=6
;②函數f(m)是奇函數;③函數f(m)在(0,k)上單調遞增;④函數f(m)的圖象關于點(
k
2
,0)
對稱;⑤函數f(m)=3
3
時AM過橢圓的右焦點.其中所有的真命題是( 。

查看答案和解析>>

科目:高中數學 來源:中學教材標準學案 數學 高二上冊 題型:044

解答題

已知橢圓=1的焦點為F1、F2,能否在x軸下方的橢圓弧上找到一點M,使M到下準線的距離|MN|等于點M到焦點F1、F2的距離的比例中項?若存在,求出M點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2013年湖南省懷化市高考數學二模試卷(理科)(解析版) 題型:選擇題

如圖展示了一個由區(qū)間(0,k)(其中k為一正實數)到實數集R上的映射過程:區(qū)間(0,k)中的實數m對應線段AB上的點M,如圖1;將線段AB圍成一個離心率為的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數m對應的實數就是n,記作f(m)=n,

現給出下列5個命題①;②函數f(m)是奇函數;③函數f(m)在(0,k)上單調遞增;④函數f(m)的圖象關于點對稱;⑤函數時AM過橢圓的右焦點.其中所有的真命題是( )
A.①③⑤
B.②③④
C.②③⑤
D.③④⑤

查看答案和解析>>

科目:高中數學 來源:2011年上海市浦東新區(qū)高考數學三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案