【題目】設(shè)z1 , z2是復(fù)數(shù),給出下列四個(gè)命題:
①若|z1﹣z2|=0,則 = ②若z1= ,則 =z2
③若|z1|=|z2|,則z1 =z2 ④若|z1|=|z2|,則z12=z22
其中真命題的序號(hào)是

【答案】①②③
【解析】解:①由|z1﹣z2|=0,得z1﹣z2=0,∴z1=z2,則 = ,故①正確;

②若z1= ,則 = ,故②正確;

③若|z1|=|z2|,則 ,即z1 =z2 ,故③正確;

④取z1=1,z2=i,滿(mǎn)足|z1|=|z2|,而z12=1, ,z12≠z22,故④錯(cuò)誤.

∴正確命題的序號(hào)是①②③.

所以答案是:①②③.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M的圓心M在y軸上,半徑為1.直線(xiàn)l:y=2x+2被圓M所截得的弦長(zhǎng)為 ,且圓心M在直線(xiàn)l的下方.
(1)求圓M的方程;
(2)設(shè)A(t,0),B(t+5,0)(﹣4≤t≤﹣1),若AC,BC是圓M的切線(xiàn),求△ABC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點(diǎn),E為CD中點(diǎn),過(guò)M,N作平面MNPQ分別與BC,AD交于點(diǎn)P,Q,若 =t
(1)當(dāng)t= 時(shí),求證:平面SAE⊥平面MNPQ;
(2)是否存在實(shí)數(shù)t,使得二面角M﹣PQ﹣A的平面角的余弦值為 ?若存在,求出實(shí)數(shù)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=. ,直線(xiàn)x=0,x=e,y=0,y=1所圍成的區(qū)域?yàn)镸,曲線(xiàn)y=f(x)與直線(xiàn)y=1圍成的區(qū)域?yàn)镹,在區(qū)域M內(nèi)任取一個(gè)點(diǎn)P,則點(diǎn)P在區(qū)域N內(nèi)概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別為△ABC中角A,B,C的對(duì)邊,函數(shù) 且f(A)=5.
(1)求角A的大小;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)橢圓 =1的右焦點(diǎn)F作斜率k=﹣1的直線(xiàn)交橢圓于A,B兩點(diǎn),且 共線(xiàn).
(1)求橢圓的離心率;
(2)當(dāng)三角形AOB的面積S△AOB= 時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m
(1)作函數(shù)f(x)的圖象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線(xiàn),.

(1)求證:對(duì),直線(xiàn)與圓總有兩個(gè)不同的交點(diǎn);

(2)是否存在實(shí)數(shù),使得圓上有四點(diǎn)到直線(xiàn)的距離為?若存在,求出的范圍;若不存在,說(shuō)明理由;

(3)求弦的中點(diǎn)的軌跡方程,并說(shuō)明其軌跡是什么曲線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案