【題目】設(shè)AB是拋物線y2=8x上的兩點(diǎn),AB的縱坐標(biāo)之和為8.

1)求直線AB的斜率;

2)若直線AB過(guò)拋物線的焦點(diǎn)F,求|AB|.

【答案】11;(216.

【解析】

1)設(shè)Ax1,y1),Bx2,y2),有y12=8x1y22=8x2,結(jié)合縱坐標(biāo)之和為8,兩式相減即可求得斜率;

2)結(jié)合(1)寫(xiě)出直線方程,聯(lián)立直線方程和拋物線方程,根據(jù)|AB|=(x1+x2)+p即可求得弦長(zhǎng).

1)根據(jù)題意,設(shè)Ax1y1),Bx2,y2),

則有y12=8x1,y22=8x2,

兩式相減,得(y1y2)(y1+y2)=8x1x2.

y1+y2=8,

k1,直線AB的斜率為1

2)由題可知F2,0),則直線AB的方程為y=x2,

代入y2=8x消去y并整理,得x212x+4=0,

x1+x212

由弦長(zhǎng)公式得|AB|=(x1+x2)+p=16.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓周率是一個(gè)在數(shù)學(xué)及物理學(xué)中普遍存在的數(shù)學(xué)常數(shù),它既常用又神秘,古今中外很多數(shù)學(xué)家曾研究它的計(jì)算方法.下面做一個(gè)游戲:讓大家各自隨意寫(xiě)下兩個(gè)小于1的正數(shù)然后請(qǐng)他們各自檢查一下,所得的兩數(shù)與1是否能構(gòu)成一個(gè)銳角三角形的三邊,最后把結(jié)論告訴你,只需將每個(gè)人的結(jié)論記錄下來(lái)就能算出圓周率的近似值.假設(shè)有個(gè)人說(shuō)“能”,而有個(gè)人說(shuō)“不能”,那么應(yīng)用你學(xué)過(guò)的知識(shí)可算得圓周率的近似值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下面給出的2008年至2017年某地二氧化碳年排放量(單位:萬(wàn)噸)柱形圖,以下結(jié)論中不正確的是(

A.逐年比較,2012年減少二氧化碳排放量的效果最顯著

B.2011年該地治理二氧化碳排放顯現(xiàn)成效

C.2010年以來(lái)該地二氧化碳年排放量呈減少趨勢(shì)

D.2010年以來(lái)該地二氧化碳年排放量與年份正相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下面四個(gè)命題:

①“若,則”的逆否命題為“若,則

②“”是“”的充分不必要條件

③命題存在,使得,則:任意,都有

④若為假命題,則均為假命題,其中真命題個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在實(shí)數(shù)集上的可導(dǎo)函數(shù)是偶函數(shù),若對(duì)任意實(shí)數(shù)都有恒成立,則使關(guān)于的不等式成立的數(shù)的取值范圍為(

A.B.(-1,1)C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓=1(a>b>0)上的點(diǎn)P到左,右兩焦點(diǎn)F1,F2的距離之和為2,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)右焦點(diǎn)F2的直線l交橢圓于A,B兩點(diǎn),若y軸上一點(diǎn)M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年7月1日迎來(lái)了我國(guó)建黨98周年,6名老黨員在這天相約來(lái)到革命圣地之一的西柏坡.6名老黨員中有3名黨員當(dāng)年在同一個(gè)班,他們站成一排拍照留念時(shí),要求同班的3名黨員站在一起,且滿足條件的每種排法都要拍一張照片,若將照片洗出來(lái),每張照片0.5元(不含過(guò)塑費(fèi)),且有一半的照片需要過(guò)塑,每張過(guò)塑費(fèi)為0.75元.若將這些照片平均分給每名老黨員(過(guò)塑的照片也要平均分),則每名老黨員需要支付的照片費(fèi)為( )

A.20.5B.21元C.21.5元D.22元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lg(2+x)+lg(2﹣x).

(1)求函數(shù)f(x)的定義域并判斷函數(shù)f(x)的奇偶性;

(2)記函數(shù)g(x)= +3x,求函數(shù)g(x)的值域;

(3)若不等式 f(x)m有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線軸交于點(diǎn),與曲線交于點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案