已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}
(1)若A∩B=A∪B,求a的值;
(2)若A∩B=A∩C≠∅,求a的值.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:先通過(guò)解二次方程化簡(jiǎn)集合B,C.
(1)根據(jù)A∩B=A∪B⇒A=B,利用二次方程根與系數(shù)的關(guān)系列出方程求出a的值.
(2)由A∩B=A∩C≠∅,可得2∈A,將2代入二次方程求出a,注意要驗(yàn)證是否滿足題意.
解答: 解:(1)∵B={x|x2-5x+6=0}={ 2,3 },A∩B=A∪B,
∴A=B.
∴2和3是方程 x2-ax+a2-19=0 的兩個(gè)根,
∴2+3=a,
∴a=5.
(2)A∩B=A∩C≠∅,
∴2∈A,
∴4-2a+a2-19=0
解得a=-3,a=5.
當(dāng)a=-3時(shí),A={2,-5}滿足題意;
當(dāng)a=5時(shí),A={2,3}不滿足題意,故a=-3.
點(diǎn)評(píng):本小題主要考查交、并、補(bǔ)集的混合運(yùn)算、集合關(guān)系中的參數(shù)取值問(wèn)題、方程的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查方程思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖的程序框圖,若輸入的x值為7,則輸出的x的值為( 。
A、2
B、3
C、log23
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的首項(xiàng)為a(a≠0),前n項(xiàng)和為Sn,且Sn+1=t•Sn+a(t≠0).設(shè)bn=Sn+1,cn=k+b1+b2+…+bn(k∈R+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)t=1時(shí),若對(duì)任意n∈N*,|bn|≥|b3|恒成立,求a的取值范圍;
(3)當(dāng)t≠1時(shí),試求三個(gè)正數(shù)a,t,k的一組值,使得{cn}為等比數(shù)列,且a,t,k成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}(n∈N*)中,其前n項(xiàng)和為Sn,滿足2Sn=n-n2
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=n•2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1,BB1=2,求:
(1)異面直線B1C1與A1C所成角的大。
(2)直線B1C1到平面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合Tn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對(duì)于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Tn,定義;
AB
=(b1-a1b2-a2,…,bn-an)
,λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當(dāng)n=5時(shí),設(shè)A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5;
(Ⅱ)證明:若A,B,C∈Tn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(Ⅲ)記I=(1,1,…,1)∈Tn.若A,B∈Tn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①已知命題p:?x∈R,tanx=2,命題q:?x∈R,x2-x+1≥0,則命題p∧q為真;
②函數(shù)f(x)=2x+2x-3在定義域內(nèi)有且只有一個(gè)零點(diǎn);
③數(shù)列{an}滿足:a1=2068,且an+1+an+n2=0(n∈N*),則a11=2013;
④設(shè)0<x<1,則
a2
x
+
b2
1-x
的最小值為(a+b)2
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
x2-2x
,當(dāng)x>1時(shí),不等式k(x-1)<xf(x)+2g′(x)+3恒成立,則整數(shù)k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為R上的可導(dǎo)函數(shù),且滿足f(x)>f′(x),對(duì)任意正實(shí)數(shù)a,下面不等式恒成立的是( 。
A、f(a)>
f(0)
ea
B、f(a)<
f(0)
ea
C、f(a)>eaf(0)
D、f(a)<eaf(0)

查看答案和解析>>

同步練習(xí)冊(cè)答案