已知集合Tn={X|X=(x1,x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Tn,定義;
AB
=(b1-a1b2-a2,…,bn-an)
,λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當n=5時,設(shè)A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5;
(Ⅱ)證明:若A,B,C∈Tn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(Ⅲ)記I=(1,1,…,1)∈Tn.若A,B∈Tn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.
考點:進行簡單的合情推理
專題:綜合題,新定義
分析:(Ⅰ)直接利用新定義運算,結(jié)合d(A,B)=7,把A=(1,2,1,2,a5),B=(2,4,2,1,3)代入A與B之間的距離d(A,B)=
n
i=1
|ai-bi|
,即可求解a5的值;
(Ⅱ)利用新定義,結(jié)合
AB
BC
,即可怎么d(A,B)+d(B,C)=d(A,C);
(Ⅲ)由d(I,A)=d(I,B)=P,得到|a1-1|+|a2-1|+|a3-1|+…+|an-1|=P,|b1-1|+|b2-1|+|b3-1|+…+|bn-1|=P.然后把d(A,B)=|a1-b1|+|a2-b2|+|a3-b3|+…+|an-bn|,利用絕對值不等式放縮得答案.
解答: (Ⅰ)解:A=(1,2,1,2,a5),B=(2,4,2,1,3).
d(A,B)=
n
i=1
|ai-bi|
=7,
得d(A,B)=|1-2|+|2-4|+|1-2|+|2-1|+|a5-3|=5+|a5-3|=7.
∴|a5-3|=2,
解得:a5=1或a5=5;
(Ⅱ)證明:設(shè)A=(a1,a2,…,an),B=(b1,b2,…,bn),C=(c1,c2,…,cn)∈Tn
AB
BC
,
AB
=(b1-a1,b2-a2,…,bn-an)
=λ(c1-b1,c2-b2,…,cn-bn),
∵d(A,B)+d(B,C)=
n
i=1
|ai-bi|
+
n
i=1
|bi-ci|
,d(A,C)=
n
i=
|ai-ci|
,
∴d(A,B)+d(B,C)=d(A,C);
(Ⅲ)解:∵I=(1,1,…,1),A=(a1,a2,…an),B=(b1,b2,…,bn),
由d(I,A)=d(I,B)=P,
得|a1-1|+|a2-1|+|a3-1|+…+|an-1|=P,
|b1-1|+|b2-1|+|b3-1|+…+|bn-1|=P.
∴d(A,B)=|a1-b1|+|a2-b2|+|a3-b3|+…+|an-bn|
=|(a1-1)-(b1-1)|+|(a2-1)-(b2-1)|+|(a3-1)-(b3-1)|+…+|(an-1)-(bn-1)|
≤|a1-1|+|b1-1|+|a2-1|+|b2-1|+…+|an-1|+|bn-1|=2P.
∴d(A,B)的最大值為2P.
點評:本題是新定義題,考查了兩點間的距離公式,訓練了絕對值不等式的應(yīng)用,解答的關(guān)鍵是對題意的理解,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下面給出四個命題:
①若a≥b>-1,則
a
1+a
b
1+b

②a<-1是一元二次方程ax2+2x+1=0有一個正根和一個負根的充分不必要條件;
③在數(shù)列{an}中,a1<a2<a3是數(shù)列{an}為遞增數(shù)列的必要不充分條件;
④方程(x+y-2)
x2+y2-9
=0
表示的曲線是一個圓和一條直線.
其中為真命題的是( 。
A、①②③B、①③④
C、②④D、①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}(n∈N*)中,其前n項和為Sn,滿足2Sn=n-n2
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
n•2an,n=2k-1
1
n2+2n
,n=2k
(k為正整數(shù)),求數(shù)列{bn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n).若函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求bn.;
(2)對(1)中的{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍;
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)
(λ為正整數(shù)),若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項組成的數(shù)列為{tn}(公共項tk=cp=dq,k,p,q為正整數(shù)),求數(shù)列{tn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}
(1)若A∩B=A∪B,求a的值;
(2)若A∩B=A∩C≠∅,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)正實數(shù)x,y,z滿足x+y+z=4,xy+yz+zx=5,則y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x且f(x)=g(x)+h(x),其中g(shù)(x)為奇函數(shù),h(x)為偶函數(shù),若不等式2a•g(x)+h(2x)≥0對任意x∈[1,2]恒成立,則
(1)g(x)=
 

(2)實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,x2+2x+2>0.則命題p的否定?p:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=4,
e
為單位向量,當
a
,
e
的夾角為
3
時,
a
+
e
a
-
e
上的投影為( 。
A、5
B、
15
4
C、
15
13
13
D、
5
21
7

查看答案和解析>>

同步練習冊答案