已知tan2θ=
3
4
π
2
<θ<π),則
2cos2
θ
2
+sinθ-1
2
cos(θ+
π
4
)
的值為
 
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:先根據(jù)正切的二倍角公式求得tanθ,在利用二倍角公式和兩角和公式對(duì)
2cos2
θ
2
+sinθ-1
2
cos(θ+
π
4
)
化簡(jiǎn),吧tanθ代入即可.
解答: 解:tan2θ=
2tanθ
1-tan2θ
=
3
4
,整理求得tanθ=-3或
1
3
(舍去),
2cos2
θ
2
+sinθ-1
2
cos(θ+
π
4
)
=
cosθ+sinθ
2
cos(θ+
π
4
)
=
2
sin(θ+
π
4
)
2
cos(θ+
π
4
)
=tan(θ+
π
4
)=
1+tanθ
1-tanθ
=
-2
4
=-
1
2
,
故答案為:-
1
2
點(diǎn)評(píng):本題主要考查了三角函數(shù)恒等變換的應(yīng)用.考查了學(xué)生對(duì)二倍角公式,兩角和公式等基礎(chǔ)公式的掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上函數(shù)f(x)=
x+b
x2+ax+1
為奇函數(shù).
(Ⅰ)求a+b的值;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x-
1
2

(1)求函數(shù)f(x)的單調(diào)減區(qū)間.
(2)設(shè)△ABC中,c=3,f(C)=0,若sin(A+C)=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx在x=2處取得極值4,且其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過坐標(biāo)原點(diǎn).
(1)求函數(shù)y=f(x)的解析式;
(2)若x∈[-3,3],求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,E點(diǎn)為DD1中點(diǎn).
(1)求證:平面ACE⊥平面BDD1
(2)求證:BD1∥平面ACE.
(3)求二面角E-AC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,E、F分別是腰AD、BC的中點(diǎn),M在線段EF上,且EM=2MF,下底是上底的2倍,若
AB
=
a
,
BC
=
b
,用
a
,
b
表示
AM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=30°,∠B=90°,D為AC中點(diǎn),E為BD的中點(diǎn),AE的延長(zhǎng)線交BC于F,將△ABD沿BD折起至△PBD,使∠PDC=90°.

(Ⅰ)求證:PF⊥平面BCD;
(Ⅱ)求直線PC與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的積都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等積數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公積,已知數(shù)列{an}是等積數(shù)列,且a1=3,公積為15,那么a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(an,2),
b
=(an+1,
2
5
),且a1=1,若數(shù)列{an}的前n項(xiàng)和為Sn,且
a
b
,則Sn=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案