已知函數(shù)
(Ⅰ)若,求函數(shù)的極小值;
(Ⅱ)設(shè)函數(shù),試問:在定義域內(nèi)是否存在三個(gè)不同的自變量使得的值相等,若存在,請(qǐng)求出的范圍,若不存在,請(qǐng)說明理由?
(1)
(2)至多只有一個(gè)解,故不存在
【解析】
試題分析:解:(I)由已知得, 2分
則當(dāng)時(shí),可得函數(shù)在上是減函數(shù),
當(dāng)時(shí),可得函數(shù)在上是增函數(shù), 5分
故函數(shù)的極小值為 6分
(II)若存在,設(shè),則對(duì)于某一實(shí)數(shù)方程
在上有三個(gè)不等的實(shí)根, 8分
設(shè),
則有兩個(gè)不同的零點(diǎn). 10分
方法一:有兩個(gè)不同的解,設(shè),
則,
設(shè),則,故在上單調(diào)遞增,
則當(dāng)時(shí),即, 12分
又,則故在上是增函數(shù), 13分
則至多只有一個(gè)解,故不存在. 14分
方法二:關(guān)于方程的解,
當(dāng)時(shí),由方法一知,則此方程無解, 11分
當(dāng)時(shí),可以證明是增函數(shù),則此方程至多只有一個(gè)解,
故不存在. 14分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)在研究函數(shù)單調(diào)性中的運(yùn)用,以及方程根的問題的運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
3 |
4 |
3 |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省韶關(guān)市高三摸底測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù), .
(1)若, 函數(shù) 在其定義域是增函數(shù),求的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)的最小值;
(3)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn),過線段的中點(diǎn)作軸的垂線分別交、于點(diǎn)、,問是否存在點(diǎn),使在處的切線與在處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省金華十校高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)(解析版) 題型:解答題
(本題滿分16分)
已知函數(shù)
(1)若函數(shù)圖象在(0,0)處的切線也恰為圖象的一條切線,求實(shí)數(shù)a的值;
(2)是否存在實(shí)數(shù)a,對(duì)任意的,都有唯一的,使得成立,若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省福州市高三年級(jí)第二次月考數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分14分)
已知函數(shù)
(1)若,求的單調(diào)遞減區(qū)間;
(2)若,求的最小值;
(3)若,且存在使得,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省寧波市高一上學(xué)期期末數(shù)學(xué)卷 題型:解答題
(本小題滿分15分)
已知函數(shù).
(1)若,求函數(shù)在區(qū)間的值域;
(2)若函數(shù)在上為增函數(shù),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com