【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )

A. B. C. D.

【答案】C

【解析】

分情況討論,由間接法得到數(shù)必須排在前兩節(jié),必須分開的事件個數(shù),不考慮限制因素,總數(shù)有種,進而得到結(jié)果.

當(dāng)“數(shù)”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有

當(dāng)“數(shù)”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,

由間接法得到滿足條件的情況有

共有:種情況,不考慮限制因素,總數(shù)有種,

故滿足條件的事件的概率為:

故答案為:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱錐的底面邊長為,分別為、的中點.

1)當(dāng)時,證明:平面平面;

2)若平面與底面所成銳二面角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,以x軸的非負半軸為極軸,建立極坐標系,已知直線l的參數(shù)方程為t為參數(shù)),圓C的極坐標方程是.

1)求直線l與圓C的公共點個數(shù);

2)在平面直角坐標系中,圓C經(jīng)過伸縮變換得到曲線,設(shè)為曲線上一點,求的最大值,并求相應(yīng)點M的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自從新型冠狀病毒爆發(fā)以來,全國范圍內(nèi)采取了積極的措施進行防控,并及時通報各項數(shù)據(jù)以便公眾了解情況,做好防護.以下是湖南省2020123-31日這9天的新增確診人數(shù).

日期

23

24

25

26

27

28

29

30

31

時間

1

2

3

4

5

6

7

8

9

新增確診人數(shù)

15

19

26

31

43

78

56

55

57

經(jīng)過醫(yī)學(xué)研究,發(fā)現(xiàn)新型冠狀病毒極易傳染,一個病毒的攜帶者在病情發(fā)作之前通常有長達14天的潛伏期,這個期間如果不采取防護措施,則感染者與一位健康者接觸時間超過15秒,就有可能傳染病毒.

1)將123日作為第1天,連續(xù)9天的時間作為變量x,每天新增確診人數(shù)作為變量y,通過回歸分析,得到模型用于對疫情進行分析.對上表的數(shù)據(jù)作初步處理,得到下面的一些統(tǒng)計量的值(部分數(shù)據(jù)已作近似處理):,.根據(jù)相關(guān)數(shù)據(jù),求該模型的回歸方程(結(jié)果精確到0.1),并依據(jù)該模型預(yù)測第10天新增確診人數(shù).

2)如果一位新型冠狀病毒的感染者傳染給他人的概率為0.3,在一次12人的家庭聚餐中,只有一位感染者參加了聚餐,記余下的人員中被感染的人數(shù)為,求最有可能(即概率最大)的值是多少.

附:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù),試討論的單調(diào)性;

2)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點是圓上一動點,點在線段上,點在半徑上,且滿足.

(1)當(dāng)在圓上運動時,求點的軌跡的方程;

(2)設(shè)過點的直線與軌跡交于點不在軸上),垂直于的直線交于點,與軸交于點,若,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),下述四個結(jié)論:

是偶函數(shù);

的最小正周期為;

的最小值為0;

上有3個零點

其中所有正確結(jié)論的編號是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球2次均未命中的概率為.

)求乙投球的命中率;

)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計得到如下數(shù)據(jù):

1

2

3

4

5

6

7

8

112

61

44.5

35

30.5

28

25

24

根據(jù)以上數(shù)據(jù),繪制了散點圖.

觀察散點圖,兩個變量不具有線性相關(guān)關(guān)系,現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量的關(guān)系進行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為的相關(guān)系數(shù).

參考數(shù)據(jù)(其中):

183.4

0.34

0.115

1.53

360

22385.5

61.4

0.135

(1)用反比例函數(shù)模型求關(guān)于的回歸方程;

(2)用相關(guān)系數(shù)判斷上述兩個模型哪一個擬合效果更好(精確到0.01),并用其估計產(chǎn)量為10千件時每件產(chǎn)品的非原料成本;

(3)該企業(yè)采取訂單生產(chǎn)模式(根據(jù)訂單數(shù)量進行生產(chǎn),即產(chǎn)品全部售出).根據(jù)市場調(diào)研數(shù)據(jù),若該產(chǎn)品單價定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產(chǎn)品的原料成本為10元,根據(jù)(2)的結(jié)果,企業(yè)要想獲得更高利潤,產(chǎn)品單價應(yīng)選擇100元還是90元,請說明理由.

參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,相關(guān)系數(shù).

查看答案和解析>>

同步練習(xí)冊答案