【題目】如表是我國某城市在2017年1月份至10月份個月最低溫與最高溫()的數(shù)據(jù)一覽表.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
最高溫 | 5 | 9 | 9 | 11 | 17 | 24 | 27 | 30 | 31 | 21 |
最低溫 |
已知該城市的各月最低溫與最高溫具有相關關系,根據(jù)這一覽表,則下列結論錯誤的是( )
A.最低溫與最高位為正相關
B.每月最高溫和最低溫的平均值在前8個月逐月增加
C.月溫差(最高溫減最低溫)的最大值出現(xiàn)在1月
D.1月至4月的月溫差(最高溫減最低溫)相對于7月至10月,波動性更大
科目:高中數(shù)學 來源: 題型:
【題目】對于曲線C所在平面上的定點,若存在以點為頂點的角,使得對于曲線C上的任意兩個不同的點A,B恒成立,則稱角為曲線C相對于點的“界角”,并稱其中最小的“界角”為曲線C相對于點的“確界角”.曲線相對于坐標原點的“確界角”的大小是 _________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上除A,B外的一個動點,DC垂直于半圓O所在的平面,DC∥EB,DC=EB=1,AB=4.
(1)證明:平面ADE⊥平面ACD;
(2)當C點為半圓的中點時,求二面角D﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某民航部門統(tǒng)計的2019年春運期間12個城市售出的往返機票的平均價格以及相比上年同期變化幅度的數(shù)據(jù)統(tǒng)計圖表如圖所示,根據(jù)圖表,下面敘述不正確的是( )
A. 同去年相比,深圳的變化幅度最小且廈門的平均價格有所上升
B. 天津的平均價格同去年相比漲幅最大且2019年北京的平均價格最高
C. 2019年平均價格從高到低居于前三位的城市為北京、深圳、廣州
D. 同去年相比,平均價格的漲幅從高到低居于前三位的城市為天津、西安、南京
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于圓周率π,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗,受其啟發(fā),我們也可以通過設計下面的實驗來估計π的值,先請240名同學,每人隨機寫下兩個都小于1的正實數(shù)x,y組成的實數(shù)對(x,y);若將(x,y)看作一個點,再統(tǒng)計點(x,y)在圓x2+y2=1外的個數(shù)m;最后再根據(jù)統(tǒng)計數(shù)m來估計π的值,假如統(tǒng)計結果是m=52,那么可以估計π的近似值為_______.(用分數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),,其中a,.
(1)求的單調區(qū)間;
(2)若存在極值點,且,其中,求證:;
(3)設,函數(shù),求證:在區(qū)間上的最大值不小于.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,側面SCD為鈍角三角形且垂直于底面ABCD,,點M是SA的中點,,,.
(1)求證:平面SCD;
(2)若直線SD與底面ABCD所成的角為,求平面MBD與平面SBC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為利于分層教學,某學校根據(jù)學生的情況分成了,,三類,經(jīng)過一段時間的學習后在三類學生中分別隨機抽取了1個學生的5次考試成績,其統(tǒng)計表如下:
類
第次 | 1 | 2 | 3 | 4 | 5 |
分數(shù)(小于等于)150 | 145 | 83 | 95 | 72 | 110 |
,;
類
第次 | 1 | 2 | 3 | 4 | 5 |
分數(shù)(小于等于)150 | 85 | 93 | 90 | 76 | 101 |
,;
類
第次 | 1 | 2 | 3 | 4 | 5 |
分數(shù)(小于等于)150 | 85 | 92 | 101 | 100 | 112 |
,;
(1)經(jīng)計算已知,的相關系數(shù)分別為,,請計算出學生的的相關系數(shù),并通過數(shù)據(jù)的分析回答抽到的哪類學生學習成績最穩(wěn)定;(結果保留三位有效數(shù)字,越大認為成績越穩(wěn)定);
(2)利用(1)中成績最穩(wěn)定的學生的樣本數(shù)據(jù),已知線性回歸方程為,利用線性回歸方程預測該生第九次的成績.
參考公式:(1)樣本的相關系數(shù);
(2)對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,極坐標系中,弧所在圓的圓心分別為,曲線是弧,曲線是弧,曲線是弧,曲線是弧.
(1)分別寫出的極坐標方程;
(2)直線的參數(shù)方程為(為參數(shù)),點的直角坐標為,若直線與曲線有兩個不同交點,求實數(shù)的取值范圍,并求出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com