分析 (Ⅰ)利用待定系數(shù)法,求出圓C的方程;
(Ⅱ)根據(jù)直線和圓相交的弦長公式,分類討論進行求解即可.
解答 解:(Ⅰ)設圓的方程為x2+y2+Dx+Ey+F=0.
∵圓C經(jīng)過三個點O(0,0)A(1,3)B(4,0),
∴$\left\{\begin{array}{l}{F=0}\\{1+9+D+3E+F=0}\\{16+4D+F=0}\end{array}\right.$,
解得D=-4,E=-2,F(xiàn)=0,
即圓C的方程x2+y2-4x-2y=0.
(Ⅱ)圓的標準方程為(x-2)2+(y-1)2=5,圓心C坐標為(2,1),半徑R=$\sqrt{5}$,
∵直線l過點P(3,6),且被圓C截得弦長為4,
∴弦心距=$\sqrt{5-4}$=1,
①過點P(3,6)且被圓C截得弦長為4的直線的斜率不存在,此時x=3,滿足題意.
②當過點P(3,6)且被圓C截得弦長為4的直線的斜率存在時設為k,
直線方程為y-6=k(x-3).即kx-y+6-3k=0,
則圓心到直線的距離d=$\frac{|5-k|}{\sqrt{1+{k}^{2}}}$=1,
解得k=$\frac{12}{5}$,所求直線方程為:12x-5y-6=0.
故所求直線方程為:x=3或12x-5y-6=0.
點評 本題考查圓的一般式方程的求法,直線與圓的位置關(guān)系的應用,利用待定系數(shù)法以及圓心到直線的距離d與半徑之間的關(guān)系是解決本題的關(guān)鍵.考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$sin($\frac{x}{2}$-$\frac{π}{2}$) | B. | 2sin($\frac{x}{2}$-$\frac{π}{2}$) | C. | $\frac{1}{2}$sin(2x-$\frac{π}{2}$) | D. | 2sin(2x-$\frac{π}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,10) | B. | (5,6) | C. | (10,11) | D. | (20,22) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com