已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn+Sm=Sn+m,且a1=1.那么a10=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:根據(jù)題意,用賦值法,令n=1,m=9可得:S1+S9=S10,即S10-S9=S1=a1=1,進(jìn)而由數(shù)列的前n項(xiàng)和的性質(zhì),可得答案.
解答: 解:根據(jù)題意,在Sn+Sm=Sn+m中,
令n=1,m=9可得:S1+S9=S10,即S10-S9=S1=a1=1,
根據(jù)數(shù)列的性質(zhì),有a10=s10-s9,即a10=1,
故答案為:1.
點(diǎn)評(píng):本題考查數(shù)列的前n項(xiàng)和的性質(zhì),對(duì)于本題,賦值法是比較簡單、直接的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

π
2
<α<π,則
1
2
+
1
2
1
2
+
1
2
cos2α
=( 。
A、sin
α
2
B、cos
α
2
C、-sin
α
2
D、-cos
α
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)為最小正周期是6的周期函數(shù),當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2;當(dāng)-1≤x<3時(shí),f(x)=x.則f(1)+f(2)+f(3)+…+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=cos2x+acosx+
5
8
a-
3
2
的最小值(0≤x≤
π
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某等差數(shù)列共有10項(xiàng),其奇數(shù)項(xiàng)之和為10,偶數(shù)項(xiàng)之和為30,則公差為( 。
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)算法,如圖所示,則輸出的結(jié)果是(  )
A、10B、11C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,cosx>0”的否定是(  )
A、?x∈R,cosx≤0
B、?x∈R,cosx≤0
C、?x∈R,cosx>0
D、?x∈R,cosx<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一計(jì)算機(jī)裝置有一個(gè)數(shù)據(jù)入口A和一個(gè)運(yùn)算結(jié)果出口B,將正整數(shù)列{n}中的各數(shù)依次輸入入口A,從出口B得到輸出的數(shù)列{an},結(jié)果表明:①A口輸入n=1時(shí),從B口得到a1=
1
3
;②當(dāng)n≥2時(shí),從A口輸入n,從B口得到的結(jié)果an是將前一結(jié)果an-1先乘以正整數(shù)列{n}中的第n-1個(gè)奇數(shù),再除以正整數(shù)列{n}中的第n+1n+1個(gè)奇數(shù).
(1)從A口輸入2和3時(shí),求從B口得到的數(shù)a2,a3分別是多少?
(2)當(dāng)A口輸入正整數(shù)列{n}時(shí),求從B口得到的數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),點(diǎn)C,D在拋物線的準(zhǔn)線上,且BC∥x軸,AD∥y軸,求證:∠CFD=
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案