【題目】已知定義在R上的可導(dǎo)函數(shù)f (x)的導(dǎo)函數(shù)為,滿足<f (x),且f (x+2)為偶函數(shù),f (4)=1,則不等式f (x)<ex的解集為________.
【答案】
【解析】
令,利用導(dǎo)數(shù)和已知即可得出其單調(diào)性.再利用函數(shù)的奇偶性和已知可得g(0)=1,即可得出.
令,
則,
∵f′(x)<f(x),∴g′(x)<0.
∴g(x)在R上單調(diào)遞減.
∵函數(shù)f(x+2)是偶函數(shù),
∴函數(shù)f(﹣x+2)=f(x+2),
∴函數(shù)關(guān)于x=2對稱,
∴f(0)=f(4)=1,
原不等式等價(jià)為g(x)<1,
∵g(0)1.
∴g(x)<1g(x)<g(0),
∵g(x)在R上單調(diào)遞減,
∴x>0.
∴不等式f(x)<ex的解集為(0,+∞).
故答案為:(0,+∞).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f(x0)=f′(x0),則稱x0是f(x)的一個(gè)“巧值點(diǎn)”,則下列函數(shù)中有“巧值點(diǎn)”的是________.
①f(x)=x2;②f(x)=e-x;③f(x)=lnx;④f(x)=tanx;⑤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,ABCD為菱形,∠ABC=60°,△PAB是邊長為2的等邊三角形,點(diǎn)M為AB的中點(diǎn),將△PAB沿AB邊折起,使平面PAB⊥平面ABCD,連接PC、PD,如圖2,
(1)證明:AB⊥PC;
(2)求PD與平面ABCD所成角的正弦值
(3)在線段PD上是否存在點(diǎn)N,使得PB∥平面MC?若存在,請找出N點(diǎn)的位置;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(3)若存在實(shí)數(shù),使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店為了解氣溫對某產(chǎn)品銷售量的影響,隨機(jī)記錄了該商店月份中天的日銷售量(單位:千克)與該地當(dāng)日最低氣溫(單位:℃)的數(shù)據(jù),如表所示:
(1)求與的回歸方程:
(2)判斷與之間是正相關(guān)還是負(fù)相關(guān);若該地月份某天的最低氣溫為,請用(1)中的回歸方程預(yù)測該商店當(dāng)日的銷售量.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列命題的真假并說明理由.
(1)某個(gè)整數(shù)不是偶數(shù),則這個(gè)數(shù)不能被4整除;
(2)若,且,則,且;
(3)合數(shù)一定是偶數(shù);
(4)若,則;
(5)兩個(gè)三角形兩邊一對角對應(yīng)相等,則這兩個(gè)三角形全等;
(6)若實(shí)系數(shù)一元二次方程滿足,那么這個(gè)方程有兩個(gè)不相等的實(shí)根;
(7)若集合,,滿足,則;
(8)已知集合,,,如果,那么.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鋼管生產(chǎn)車間生產(chǎn)一批鋼管,質(zhì)檢員從中抽出若干根對其直徑(單位: )進(jìn)行測量,得出這批鋼管的直徑 服從正態(tài)分布.
(1)當(dāng)質(zhì)檢員隨機(jī)抽檢時(shí),測得一根鋼管的直徑為,他立即要求停止生產(chǎn),檢查設(shè)備,請你根據(jù)所學(xué)知識,判斷該質(zhì)檢員的決定是否有道理,并說明判斷的依據(jù);
(2)如果鋼管的直徑滿足為合格品(合格品的概率精確到0.01),現(xiàn)要從60根該種鋼管中任意挑選3根,求次品數(shù)的分布列和數(shù)學(xué)期望.
(參考數(shù)據(jù):若,則; .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,其中.
(1)求及數(shù)列的通項(xiàng)公式;
(2)若,為整數(shù),且對任意的,恒成立,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com