分析 (Ⅰ)利用三角形內(nèi)角和定理可得$\frac{a+b}{sinC}$=$\frac{a-c}{sinA-sinB}$.由正弦定理可得a2+c2-b2=ac,由余弦定理可得cosB=$\frac{1}{2}$,結(jié)合范圍B∈(0,π)可得B的值.
(Ⅱ)由cosA=$\frac{{\sqrt{6}}}{3}$,可求sinA=$\frac{\sqrt{3}}{3}$,利用sinC=sin(A+B)可求sinC的值,利用三角形面積公式可求ab=6,①,又由正弦定理,比例性質(zhì)可求3a=2b,②聯(lián)立即可得解a的值.
解答 (本題滿分14分)
解:(Ⅰ)∵$\frac{a+b}{sin(A+B)}$=$\frac{a+b}{sinC}$=$\frac{a-c}{sinA-sinB}$.
∴由正弦定理可得:$\frac{a+b}{c}=\frac{a-c}{a-b}$,整理可得:a2+c2-b2=ac,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
∴由B∈(0,π),可得:B=$\frac{π}{3}$.…..(6分)
(Ⅱ)∵cosA=$\frac{{\sqrt{6}}}{3}$,
∴可得:sinA=$\frac{\sqrt{3}}{3}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{\sqrt{3}}{3}×\frac{1}{2}+\frac{\sqrt{6}}{3}×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{2}+\sqrt{3}}{6}$.
∵△ABC的面積為$\frac{{3\sqrt{2}+\sqrt{3}}}{2}$=$\frac{1}{2}absinC$=$\frac{1}{2}×ab×$$\frac{3\sqrt{2}+\sqrt{3}}{6}$,可解得:ab=6,①
又∵$\frac{a}=\frac{sinA}{sinB}$=$\frac{\frac{\sqrt{3}}{3}}{\frac{\sqrt{3}}{2}}$=$\frac{2}{3}$,整理可得:3a=2b,②
∴由①②解得:a=2.…(14分)
點(diǎn)評 本題主要考查了三角形內(nèi)角和定理,正弦定理,余弦定理,三角形面積公式,比例性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想和計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分且必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com