如圖:長(zhǎng)為3的線段PQ與邊長(zhǎng)為2的正方形ABCD垂直相交于其中心O(PO>OQ).
(1)若二面角P-AB-Q的正切值為-3,試確定O在線段PQ的位置;
(2)在(1)的前提下,以P,A,B,C,D,Q為頂點(diǎn)的幾何體PABCDQ是否存在內(nèi)切球?若存在,試確定其內(nèi)切球心的具體位置;若不存在,請(qǐng)說(shuō)明理由.
分析:(1)取線段AB的中點(diǎn)為點(diǎn)E,連接PE,OE,可以證明,∠PEQ為二面角P-AB-Q的平面角,且tan∠PEQ=-3.將∠PEQ 看作∠PEQ與∠QEO之和.設(shè)OP=x,利用兩角和的正切公式,建立關(guān)于x的方程并解出即可.
(2)若設(shè)線段CD的中點(diǎn)為點(diǎn)F,由對(duì)稱性可知:平面四邊形PEQF的內(nèi)切圓的圓心為O′,半徑即為r,利用分割面積法可以求出r的值,O′在PQ上.在四邊形PEQF中利用平面幾何知識(shí)確定出內(nèi)切球心的具體位置.
解答:解:(1)取線段AB的中點(diǎn)為點(diǎn)E,
連接PE,OE,QE.由于四邊形ABCD是正方形,O為其中心,所以O(shè)E⊥AB,
又PO⊥面ABCD AB?面ABCD,所以PO⊥AB,
而 OE∩AB=O,所以AB⊥面PEO,PE?面PEO,所以AB⊥PE,
同理可以證出AB⊥QE,∴∠PEQ為二面角P-AB-Q的平面角,tan∠PEQ=-3.
設(shè)∠PEQ=α,∠QEO=β,OP=x,則OQ=3-x.且OE=1
在RT△PEO中,tanα=
OP
OE
=x,
同理在RT△QEO中,tanβ=
OQ
OE
=3-x
由tan∠PEQ=tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
3
1-x(3-x)
=-3,
得:x2-3x+2=0
∵PO>OQ∴OP=x=2
故O在線段PQ上的靠近Q點(diǎn)的三分點(diǎn)位置;
(2)幾何體PABCDQ存在內(nèi)切球,令球心為O
若設(shè)線段CD的中點(diǎn)為點(diǎn)F,內(nèi)切球的半徑為r,由對(duì)稱性可知:平面四邊形PEQF的內(nèi)切圓的圓心為O′,半徑即為r,
故SPEQF=
1
2
EF•PQ=
1
2
r(2PE+2QE),而PE=
PO2+OE2
=
5
,QE=
QO2+OE2
=
2

所以
1
2
×2×3=
1
2
r(2
5
+2
2
),得r=
5
-
2

由三角形相似有:
r
PO
=sin∠EPO=
OE
PE
=
1
5
=
5
5

所以PO′=
5
r=5-
10
.故其內(nèi)切球心O′在點(diǎn)P距離為5-
10
 的位置上.
(注:也可用分割體積法求r)
點(diǎn)評(píng):本題考查了二面角的定義,度量,方程思想.還考查了組合體的幾何性質(zhì),面積(體積)分割的思想.本題中的幾何體實(shí)際上是由兩個(gè)同底不等高的正四棱錐組合而成.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖邊長(zhǎng)為4的正方形ABCD所在平面與正△PAD所在平面互相垂直,M,Q分別為PC,AD的中點(diǎn).
(1)求點(diǎn)P到平面ABCD的距離;
(2)求證:PA∥平面MBD;
(3)試問(wèn):在線段AB上是否存在一點(diǎn)N,使得平面PCN⊥平面PQB?若存在,試指出點(diǎn)N的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:長(zhǎng)為3的線段PQ與邊長(zhǎng)為2的正方形ABCD垂直相交于其中心O(PO>OQ).
(1)若二面角P-AB-Q的正切值為-3,試確定O在線段PQ的位置;
(2)在(1)的前提下,以P,A,B,C,D,Q為頂點(diǎn)的幾何體PABCDQ是否存在內(nèi)切球?若存在,試確定其內(nèi)切球心的具體位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

.如圖:長(zhǎng)為3的線段PQ與邊長(zhǎng)為2的正方形ABCD垂直相交于其中心O(PO>OQ).(1)若二面角P-AB-Q的正切值為-3,試確定O在線段PQ的位置;(2)在(1)的前提下,以P,A,B,C,D,Q為頂點(diǎn)的幾何體PABCDQ是否存在內(nèi)切球?若存在,試確定其內(nèi)切球心的具體位置;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市臨川一中高三5月模擬數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖:長(zhǎng)為3的線段PQ與邊長(zhǎng)為2的正方形ABCD垂直相交于其中心O(PO>OQ).
(1)若二面角P-AB-Q的正切值為-3,試確定O在線段PQ的位置;
(2)在(1)的前提下,以P,A,B,C,D,Q為頂點(diǎn)的幾何體PABCDQ是否存在內(nèi)切球?若存在,試確定其內(nèi)切球心的具體位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案