19.斜率為2的直線的傾斜角α所在的范圍是( 。
A.0°<α<45°B.45°<α<90°C.90°<α<135°D.135°<α<180°

分析 根據(jù)直線斜率和傾斜角之間的關系即可求解.

解答 解:∵直線l的斜率是2,
∴設直線的傾斜角為θ,則tanθ=2,
∵tan45°=1<2,而tanθ=2>0,
故θ是銳角,
故選:B.

點評 本題主要考查直線斜率和傾斜角的計算,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.求過橢圓x2+4y2=16內(nèi)一點A(1,1)的弦PO的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知(${x}^{\frac{2}{3}}$+3x2n的展開式中,各項系數(shù)和比它的二項式系數(shù)和大992.
(1)求(1-$\frac{x}{2}$)2n的展開式中各項系數(shù)的最大值和最小值;
(2)已知(1+x+x2n=a0+a1x+a2x2+…+a2nx2n求下列各式的值:
①a1+a2+a2+…+a2n;
②a1+2a2+3a2+…+2na2n
③a2+2a3+22a4…+22n-2a2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.計算i+i2+i3+…+i9=i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,a1=1,$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=1(n≥2),數(shù)列{bn}滿足b1=1,b2=3,bn+2=3bn+1-2bn
(1)求an;
(2)證明數(shù)列{bn+1-bn}與數(shù)列{bn+1-2bn}均是等比數(shù)列,并求bn;
(3)設cn=an•bn,求數(shù)列{cn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某產(chǎn)品的廣告支出x(單位:萬元)與銷售收入y(單位:萬元)之間有下表所對應的數(shù)據(jù):
廣告支出x(單位:萬元)1234
銷售收入y(單位:萬元)12284256
(Ⅰ)求出y對x的線性回歸方程;
(Ⅱ)若廣告費為9萬元,則銷售收入約為多少萬元?
(線性回歸方程系數(shù)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.$cos\frac{π}{3}$=( 。
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設f(x)為奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù),f(-2)=0,則f(x)<0的解集為( 。
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-2,0)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知x、y∈R+,且滿足$\frac{1}{x}$+$\frac{2}{y}$=4,則8x+y的取值范圍是$[\frac{9}{2},+∞)$.

查看答案和解析>>

同步練習冊答案