(本小題満分12分)如圖,在四棱錐P—ABCD中,底面ABCD為矩形,側棱PA⊥底面ABCD,AB=,BC=1,PA=2,E為PD的中點.
(Ⅰ)求直線AC與PB所成角的余弦值;
(Ⅱ)在側面PAB內找一點N,使NE⊥面PAC,并求出N點到AB和AP的距離.

(Ⅰ)建立如圖所示的空間直角坐標系,
則A、B、C、D、P、E的坐標為A(0,0,0)、
B(,0,0)、C(,1,0)、D(0,1,0)、


 
P(0,0,2)、E(0,,1),

從而
的夾角為θ,則

∴AC與PB所成角的余弦值為
(Ⅱ)由于N點在側面PAB內,故可設N點坐標為(x,O,z),則,由NE⊥面PAC可得,
 ∴
即N點的坐標為,從而N點到AB、AP的距離分別為1,

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在正三棱柱ABC-A1B1C1中,AB=2,AA1,點DAC的中點,點E在線段AA1上.

(1)當AEEA1=1∶2時,求證DEBC1
(2)是否存在點E,使二面角D-BE-A等于60°,若存在求AE的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知長方形中,,的中點. 將沿折起,使得平面平面.

(I)求證: ;
(II)若點是線段的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理)如圖,P—ABCD是正四棱錐,是正方體,其中

(1)求證:;
(2)求平面PAD與平面所成的銳二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖, 在直角梯形中,

分別是的中點,現(xiàn)將折起,使,
(1)求證:∥平面;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖:在空間四邊形ABCD中,AB,BC,BD兩兩垂直,且AB=BC=2,E是AC的中點,異面直線AD和BE所成的角為,求BD的長度.(15分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知棱長為1的正方體ABCD-A1B1C1D1,求平面A1BC1與平面ABCD所成的二面角的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點,AB="4AN," M、S分別為PB,BC的中點.以A為原點,射線AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知直線l的傾斜角為,直線l1經(jīng)過點A(3,2)和B(a,-1),且直線l1與直線l垂直,直線l2的方程為2x+by+1=0,且直線l2與直線l1平行,則a+b等于(  )

A.-4 B.-2 C.0 D.2

查看答案和解析>>

同步練習冊答案