10.袋中有大小相同的3個(gè)紅球,7個(gè)白球,從中不放回地一次摸取2球,在已知第一次取出白球的前提下,第二次取得紅球的概率是(  )
A.$\frac{1}{5}$B.$\frac{1}{3}$C.$\frac{3}{8}$D.$\frac{3}{7}$

分析 由已知中袋中有2個(gè)白球,3個(gè)黑球,在第一次取出白球的條件下,還剩下1個(gè)白球,3個(gè)黑球,分析出第二次取出一個(gè)球的所有情況和第二次取出的是黑球的情況個(gè)數(shù),代入古典概型概率公式,可得答案.

解答 解:袋中有3個(gè)紅球,7個(gè)白球,
在第一次取出白球的條件下,還剩下3個(gè)紅球,6個(gè)白球,
故第二次取出的情況共有9種
其中第二次取出的是紅球有3種
故在第一次取出白球的條件下,第二次取出的是紅球的概率是$\frac{1}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是條件概率,其中要注意計(jì)算第二次取出的是黑球的概率是在第一次取出白球的條件下.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=x+sinx,則${∫}_{-π}^{0}$f(x)dx=-2-$\frac{{π}^{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點(diǎn)F為拋物線y=2x2的焦點(diǎn),點(diǎn)A為橢圓4x2+3y2=1的右頂點(diǎn),則|AF|=$\frac{\sqrt{17}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求導(dǎo):y=$\frac{{e}^{2x}+{e}^{-2x}}{{e}^{x}+{e}^{-x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=ex-x-2
(1)求函數(shù)f(x)在x=1處的切線方程;
(2)若k為整數(shù),且當(dāng)x>0時(shí),(x-k)f′(x)+x+1>0恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.“斐波那契數(shù)列”是數(shù)學(xué)史上一個(gè)著名數(shù)列,斐波那契數(shù)列{an}中,a1=1,a2=1,an+an+1=an+2(n∈N*),則a7=13;若a2017=m,則數(shù)列{an}的前2015項(xiàng)和是m-1(用m表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)某幾何體的三視圖如圖則該幾何體的體積為24m3    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了5月1日至5月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日    期5月1日5月2日5月3日5月4日5月5日
溫差x(°C)101211138
發(fā)芽數(shù)y(顆)2325302616
$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$…(1)
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{{x}^{\;}}}^{2}}$…(2)
(1)從5月1日至5月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均小于25”的概率;
(2)根據(jù)5月2日至5月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=bx+a;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|x2=x}和集合B={x|lgx≤0},則A∪B等于(  )
A.(0,1]B.(-∞,1]C.[0,1)D.[0,1]

查看答案和解析>>

同步練習(xí)冊答案