15.若復(fù)數(shù)z滿足z•i-3i=|3+4i|,則z的共軛復(fù)數(shù)為(  )
A.3-5iB.3+5iC.5-3iD.5+3i

分析 求出復(fù)數(shù)的模,移向變形后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:由z•i-3i=|3+4i|,得$z•i=\sqrt{{3}^{2}+{4}^{2}}+3i=5+3i$,
∴$z=\frac{5+3i}{i}=\frac{(5+3i)(-i)}{-{i}^{2}}=3-5i$,則$\overline{z}=3+5i$.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)命題P:實(shí)數(shù)x滿足2x2-5ax-3a2<0,其中a>0,命題q:實(shí)數(shù)x滿足$\left\{{\begin{array}{l}{2sinx>1}\\{{x^2}-x-2<0}\end{array}}\right.$.
(1)若a=2,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx.
(1)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的值域;
(2)在△ABC中,若f(C)=2,2sinB=cos(A-C)-cos(A+C),求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)化簡(jiǎn):(-2x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)(3x${\;}^{-\frac{1}{2}}$y${\;}^{\frac{2}{3}}$)(-4x${\;}^{\frac{1}{4}}$y${\;}^{\frac{2}{3}}$)
(2)計(jì)算:($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)0.5+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow a$=(x,5),$\overrightarrow b$=(2,-2),且$\overrightarrow a+\overrightarrow b$與$\overrightarrow a$共線,則x=( 。
A.5B.-5C.$\frac{5}{4}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若$\frac{1}{2}≤x≤8$,求函數(shù)y=(log2x-1)(log2x-2)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)$\overrightarrow{a}$=(3,-2,-1)是直線l的方向向量,$\overrightarrow{n}$=(1,2,-1)是平面α的法向量,則直線l與平面α(  )
A.垂直B.平行C.在平面α內(nèi)D.平行或在平面α內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如果一系列的函數(shù)滿足:解析式相同,值域相同但定義域不同,則稱這些函數(shù)叫做“孿生函數(shù)”.那么解析式為y=3x2+4,值域?yàn)閧7,16}的“孿生函數(shù)”共有9個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=5cosα}\\{y=3sinα}\end{array}}\right.$(α為參數(shù)),則它的離心率為( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{5}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案