【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)增區(qū)間為,減區(qū)間為;(2).
【解析】
(1)將代入函數(shù)的解析式,利用導(dǎo)數(shù)可得出函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的導(dǎo)數(shù),分類討論的范圍,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最值可判斷是否恒成立,可得實(shí)數(shù)的取值范圍.
(1)當(dāng)時(shí),,
則,
當(dāng)時(shí),,則,此時(shí),函數(shù)為減函數(shù);
當(dāng)時(shí),,則,此時(shí),函數(shù)為增函數(shù).
所以,函數(shù)的增區(qū)間為,減區(qū)間為;
(2),則,
.
①當(dāng)時(shí),即當(dāng)時(shí),,
由,得,此時(shí),函數(shù)為增函數(shù);
由,得,此時(shí),函數(shù)為減函數(shù).
則,不合乎題意;
②當(dāng)時(shí),即時(shí),
.
不妨設(shè),其中,令,則或.
(i)當(dāng)時(shí),,
當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);
當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù);
當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù).
此時(shí),
而,
構(gòu)造函數(shù),,則,
所以,函數(shù)在區(qū)間上單調(diào)遞增,則,
即當(dāng)時(shí),,所以,.
,符合題意;
②當(dāng)時(shí),,函數(shù)在上為增函數(shù),
,符合題意;
③當(dāng)時(shí),同理可得函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,
此時(shí),則,解得.
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),過點(diǎn)M(1,0)的直線l與拋物線C:y2=2px(p>0)交于A,B兩點(diǎn),且.
(1)求拋物線C的方程;
(2)過點(diǎn)M作直線l'⊥l交拋物線C于兩點(diǎn),記△OAB,△OPQ的面積分別為S1,S2,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,平面,,點(diǎn)E,F分別為和的中點(diǎn).
(1)求證:直線平面;
(2)求點(diǎn)F到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古人云:“腹有詩書氣自華.”為響應(yīng)全民閱讀,建設(shè)書香中國,校園讀書活動(dòng)的熱潮正在興起.某校為統(tǒng)計(jì)學(xué)生一周課外讀書的時(shí)間,從全校學(xué)生中隨機(jī)抽取名學(xué)生進(jìn)行問卷調(diào)査,統(tǒng)計(jì)了他們一周課外讀書時(shí)間(單位:)的數(shù)據(jù)如下:
一周課外讀書時(shí)間/ | 合計(jì) | |||||||||
頻數(shù) | 4 | 6 | 10 | 12 | 14 | 24 | 46 | 34 | ||
頻率 | 0.02 | 0.03 | 0.05 | 0.06 | 0.07 | 0.12 | 0.25 | 0.17 | 1 |
(1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時(shí)間的中位數(shù).
(2)如果讀書時(shí)間按,,分組,用分層抽樣的方法從名學(xué)生中抽取20人.
①求每層應(yīng)抽取的人數(shù);
②若從,中抽出的學(xué)生中再隨機(jī)選取2人,求這2人不在同一層的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的中線與中位線相交于,已知是繞旋轉(zhuǎn)過程中的一個(gè)圖形,下列命題中,正確的是( )
A.動(dòng)點(diǎn)在平面上的射影在線段上
B.恒有平面平面
C.三棱錐的體積有最大值
D.旋轉(zhuǎn)過程中二面角的平面角始終為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生社團(tuán)對(duì)年元宵節(jié)當(dāng)天游覽磁器口古鎮(zhèn)景區(qū)的游客滿意度抽樣調(diào)查,從當(dāng)日萬名游客中隨機(jī)抽取人進(jìn)行統(tǒng)計(jì),結(jié)果如下圖的頻率分布表和頻率分布直方圖:
年齡 | 頻數(shù) | 頻率 | 滿意 | 不滿意 |
合計(jì) |
(1)求、、的值;
(2)利用頻率分布直方圖,估算游客的平均年齡和年齡的中位數(shù);
(3)稱年齡不低于歲的人群為“安逸人群”,完成列聯(lián)表,并判斷是否有的把握認(rèn)為游客的滿意度與“安逸人群”人數(shù)相關(guān).
歲以上 | 歲以下 | 合計(jì) | |
滿意 | |||
不滿意 | |||
合計(jì) |
參考公式:,其中.
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若是的一個(gè)極值點(diǎn),且,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com