某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設(shè)ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.

(Ⅰ)求ξ的分布及數(shù)學(xué)期望;

(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增”為事件A,求事件A的概率.

解析:(Ⅰ)ξ的分布列為

ξ

1

3

P

0.76

0.24

Eξ=1×0.76+3×0.24=1.48.

(Ⅱ)因為f(x)=(x-ξ)2+1-ξ2,所以函數(shù)f(x)=x2-3ξx+1在區(qū)間[ξ,+∞)上單調(diào)遞增,要使f(x)在[2,+∞)上單調(diào)遞增,

當且僅當ξ≤2,即ξ≤.

從而P(A)=P(ξ≤)

=P(ξ=1)=0.76.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設(shè)ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(Ⅰ)求ξ的分布及數(shù)學(xué)期望;
(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某城市有甲、乙、丙3個旅游景點,一位客人游覽這3個景點的概率分別為0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設(shè)ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(1)求ξ的分布;
(2)求ξ的數(shù)學(xué)期望及方差;
(3)記“函數(shù)f(x)=x2-2ξx+lnx是單調(diào)增函數(shù)”為事件A,求事件A的概率.
(可能用到的數(shù)據(jù):0.762≈0.58,0.482≈0.23,1.522≈2.31,0.242≈0.06)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶雞模擬)某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響.
(1)求客人游覽2個景點的概率;
(2)設(shè)ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值,求ξ的分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科做)某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設(shè)ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.
(Ⅰ)求ξ的分布及數(shù)學(xué)期望;
(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年湖南卷理)(14分)

       某城市有甲、乙、丙3個旅游景點,一位客人游覽這三個景點的概率分別是0.4,0.5,0.6,且客人是否游覽哪個景點互不影響,設(shè)ξ表示客人離開該城市時游覽的景點數(shù)與沒有游覽的景點數(shù)之差的絕對值.

(Ⅰ)求ξ的分布及數(shù)學(xué)期望;

(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞上單調(diào)遞增”為事件A,求事件A的概率.

查看答案和解析>>

同步練習(xí)冊答案