4.設(shè)集合U={1,2,3,4,5,6},∁UM={1,2,4};則集合M={3,5,6}.

分析 利用全集和補(bǔ)集的定義,確定集合M元素的構(gòu)成

解答 解:集合U={1,2,3,4,5,6},∁UM={1,2,4};
則M是把全集U中的元素去掉后,剩余元素構(gòu)成的集合,
即集合M={3,5,6}.
故答案為:{3,5,6}.

點(diǎn)評(píng) 本題考查全集和補(bǔ)集的定義與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.過(guò)圓x2+y2=25上一點(diǎn)P(3,4)的切線方程為( 。
A.3x+4y+25=0B.3x-4y+25=0C.3x+4y-25=0D.3x-4y-25=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.過(guò)點(diǎn)P作圓(x+1)2+(y-2)2=1的切線,切點(diǎn)為M,若|PM|=|PO|(O為原點(diǎn)),則|PM|的最小值是( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{3\sqrt{5}-5}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓C和拋物線y2=x交于M,N兩點(diǎn),且直線MN恰好通過(guò)橢圓C的右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過(guò)橢圓C右焦點(diǎn)的直線l和橢圓C交于A,B兩點(diǎn),點(diǎn)P在橢圓上,且$\overrightarrow{OA}$=$2\overrightarrow{BP}$,其中O為坐標(biāo)原點(diǎn),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=3+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}$(α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為sinθ-cosθ=$\frac{1}{ρ}$,求直線被曲線C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.定義:若m-$\frac{1}{2}$<x$≤m+\frac{1}{2}$(m∈Z),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即m={x},關(guān)于函數(shù)f(x)=x-{x}的四個(gè)命題:①定義域?yàn)镽,值域?yàn)椋?$\frac{1}{2}$,$\frac{1}{2}$]; ②點(diǎn)(k,0)是函數(shù)f(x)圖象的對(duì)稱(chēng)中心(k∈Z);③函數(shù)f(x)的最小正周期為1; ④函數(shù)f(x)在(-$\frac{1}{2}$,$\frac{3}{2}$]上是增函數(shù).上述命題中,真命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知p=a+$\frac{1}{a-2}\;\;(a>2)$,q=-b2-2b+3(b∈R),則p,q的大小關(guān)系為( 。
A.p≥qB.p≤qC.p>qD.p<q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,若關(guān)于x方程f(x)=ax有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)集合A={x|x>1},B={x|x≥2}.
(1)求集合A∩(∁RB);
(2)若集合C={x|x-a>0},且滿(mǎn)足A∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案