已知x>0,y>0,z>0,求證:(
y
x
+
z
x
)(
x
y
+
z
y
)(
x
z
+
y
z
)≥8.
考點(diǎn):不等式的證明
專題:證明題,不等式的解法及應(yīng)用
分析:利用基本不等式,即可證明結(jié)論.
解答: 證明:(
y
x
+
z
x
)(
x
y
+
z
y
)(
x
z
+
y
z
)=
1
xyz
•(y+z)(x+z)(x+y)≥
1
xyz
•2
yz
•2
xz
•2
xy
=8,
當(dāng)且僅當(dāng)x=y=z時(shí),等號(hào)成立.
點(diǎn)評(píng):本題考查不等式的證明,考查基本不等式的運(yùn)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比為q的等比數(shù)列,a2,a4,a6成公差為1的等差數(shù)列,則q的最小值是(  )
A、
33
B、1
C、3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U為全集,集合M、N?U,若M∪N=N,則(  )
A、∁UM?(∁UN)
B、M⊆(∁UN)
C、(∁UM)⊆(∁UN)
D、M?(∁UN)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)P為圓O的弦AB上的一點(diǎn),連接PO,過點(diǎn)P作PC⊥OP,且PC交圓O于C.若AP=4,PC=2,則PB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別為橢圓C:
x2
a2
+
8y2
b2
=1(a>0,b>0)的左、右兩個(gè)焦點(diǎn).
(Ⅰ)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段F1K的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(a+1)lnx+ax2+1,設(shè)a≤-2,求不等式f(x)≤a+5-4x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且f(x+2)=f(x)對(duì)任意實(shí)數(shù)x都成立,則f(2014)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,以橢圓
x2
a2
+y2
=1的右焦點(diǎn)F2為圓心,1-c為半徑作圓F2(其中c為已知橢圓的半焦距),過橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T.
(Ⅰ)若a=
5
4
,P為橢圓的右頂點(diǎn),求切線長(zhǎng)|PT|;
(Ⅱ)設(shè)圓F2與x軸的右交點(diǎn)為Q,過點(diǎn)Q作斜率為k(k>0)的直線l與橢圓相交于A,B兩點(diǎn),若OA⊥OB,且|PT|≥
3
2
(a-c)恒成立,求直線l被圓F2所截得弦長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋子裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別是1,2,3,4,先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為m,將球放回袋中,然后再從袋中隨機(jī)取出一個(gè)球,該球的編號(hào)為n,則n<m+2的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案