12.如圖在直角梯形ABCP中,AP∥BC,AB=BC=$\frac{1}{2}$AP=2,D是AP的中點,E,G分別為PC,CB的中點,將△PCD沿CD折起,使得PD⊥平面ABCD,F(xiàn)為線段PD上一動點.當二面角G-EF-D的大小為$\frac{π}{4}$時,求FG與平面PBC所成角的余弦值.

分析 由題意可知,AD⊥DC,AD⊥PD,DC⊥PD,以D為原點,分別以DA,DC,DP所在直線為x,y,z軸距離空間直角坐標系,利用空間向量結(jié)合二面角G-EF-D的大小為$\frac{π}{4}$,求出F得位置可得F的坐標,進一步求出FG與平面PBC所成角的余弦值.

解答 解:由題意可知,AD⊥DC,AD⊥PD,DC⊥PD,以D為原點,
分別以DA,DC,DP所在直線為x,y,z軸距離空間直角坐標系,
∵AB=BC=$\frac{1}{2}$AP=2,且E,G分別為PC,CB的中點,
∴G(1,2,0),C(0,2,0),P(0,0,2),E(0,1,1),設(shè)F(0,0,a),
∴$\overrightarrow{GF}$=(-1,-2,a),$\overrightarrow{GE}$=(-1,-1,1),
設(shè)平面EFG的一個法向量為$\overrightarrow{n}$=(x,y,z),
則有$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{GE}=-x-y+z=0}\\{\overrightarrow{n}•\overrightarrow{GF}=-x-2y+az=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(2-a,a-1,1).
又平面EFD的一個法向量$\overrightarrow{m}$=(1,0,0),
∴|cos<$\overrightarrow{n},\overrightarrow{m}$>|=$\frac{|2-a|}{\sqrt{(2-a)^{2}+(a-1)^{2}+1}×1}$=$\frac{\sqrt{2}}{2}$,
解得a=1,∴$\overrightarrow{GF}$=(-1,-2,1),
設(shè)平面PBC的法向量$\overrightarrow{r}$=(x,y,z),
∵$\overrightarrow{PC}$=(0,2,-2),$\overrightarrow{BC}$=(-2,0,0),
則有$\left\{\begin{array}{l}{\overrightarrow{r}•\overrightarrow{PC}=2y-2z=0}\\{\overrightarrow{r}•\overrightarrow{BC}=-2x=0}\end{array}\right.$,取z=1,得$\overrightarrow{r}$=(0,1,1).
設(shè)FG與平面PBC所成角為θ,
則有sinθ=|cos<$\overrightarrow{GF},\overrightarrow{r}$>|=$\frac{|\overrightarrow{FG}•\overrightarrow{r}|}{|\overrightarrow{FG}|•|\overrightarrow{r}|}$=$\frac{1}{\sqrt{6}•\sqrt{2}}=\frac{\sqrt{3}}{6}$,
∴cosθ=$\sqrt{1-si{n}^{2}θ}=\frac{\sqrt{33}}{6}$.
∴FG與平面PBC所成角的余弦值為$\frac{{\sqrt{33}}}{6}$.

點評 本題考查直線與平面所成角的余弦值的求法,注意向量法的合理運用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了解參加某種知識競賽的10 000名學(xué)生的成績,從中抽取一個容量為500的樣本,那么采用什么抽樣方法比較恰當?寫出抽樣過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}滿足${a_1}=\frac{1}{k}$,k≥2,k∈N*,[an]表示不超過an的最大整數(shù)(如[1.6]=1),記bn=[an],數(shù)列{bn}的前n項和為Tn
①若數(shù)列{an}是公差為1的等差數(shù)列,則T4=6;
②若數(shù)列{an}是公比為k+1的等比數(shù)列,則Tn=$\frac{1}{{k}^{2}}$[(1+k)n-nk-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知復(fù)數(shù)z1=1-i,z1•z2+$\overline{{z}_{1}}$=2+2i,求復(fù)數(shù)z2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)$y=\sqrt{{x^2}-3x-4}$的單調(diào)遞增區(qū)間是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知奇函數(shù)y=f(x),x∈R,a=${∫}_{-2}^{2}$[f(x)+$\frac{3}{8}$x2]dx,則二項式($\frac{x}{2}$-$\frac{a}{{x}^{2}}$)9的展開式的常數(shù)項為( 。
A.-$\frac{21}{2}$B.-$\frac{5}{4}$C.-1D.-$\frac{15}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}是公差為d的等差數(shù)列,在{an}的每相鄰兩項之間插入這兩項的算術(shù)平均值,得到新數(shù)列{an(1)},這樣的操作叫做該數(shù)列的1次“A”擴展,連續(xù)m次“A”擴展,得到新數(shù)列{an(m)}.例如:數(shù)列1,2,3第1次“A”擴展后得到數(shù)列1,$\frac{3}{2}$,2,$\frac{5}{2}$,3;第2次“A”擴展后得到數(shù)列1,$\frac{5}{4}$,$\frac{3}{2}$,$\frac{7}{4}$,2,$\frac{9}{4}$,$\frac{5}{2}$,$\frac{11}{4}$,3.
(1)求證:{an(m)}為等差數(shù)列,并求其公差dm;
(2)已知等差數(shù)列{an}共有n項,且a1=1,d=1,{an(m)}的所有項的和為Sn(m),求使Sn(n2)-n2>2017,成立的n的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,分別記錄了4月1日至4月5日每天的晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期4月1日4月2日4月3日4月4日4月5日
溫差x°C121113108
發(fā)芽率y顆2625302316
(1)從這5天中任選2天,求至少有一天種子發(fā)芽數(shù)超過25顆的概率;
(2)請根據(jù)4月1日、4月2日、4月3日這3天的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)根據(jù)(2)中所得的線性回歸方程,預(yù)測溫差為16°C時,種子發(fā)芽的顆數(shù).
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合$M=\{x|y=\sqrt{2x-{x^2}}\},N=\{x|x≤a\}$,若M⊆N,則實數(shù)a的取值范圍是(  )
A.0≤a≤2B.0≤aC.2≤aD.a≤2

查看答案和解析>>

同步練習(xí)冊答案