17.已知奇函數(shù)y=f(x),x∈R,a=${∫}_{-2}^{2}$[f(x)+$\frac{3}{8}$x2]dx,則二項(xiàng)式($\frac{x}{2}$-$\frac{a}{{x}^{2}}$)9的展開(kāi)式的常數(shù)項(xiàng)為( 。
A.-$\frac{21}{2}$B.-$\frac{5}{4}$C.-1D.-$\frac{15}{8}$

分析 利用定積分的定義求出a的值,再利用展開(kāi)式的通項(xiàng)公式求出常數(shù)項(xiàng).

解答 解:奇函數(shù)y=f(x),x∈R,
∴a=${∫}_{-2}^{2}$[f(x)+$\frac{3}{8}$x2]dx
=${∫}_{-2}^{2}$f(x)dx+${∫}_{-2}^{2}$$\frac{3}{8}$x2dx
=0+$\frac{1}{8}$x3${|}_{-2}^{2}$
=2;
∴($\frac{x}{2}$-$\frac{2}{{x}^{2}}$)9展開(kāi)式的通項(xiàng)公式為
Tr+1=${C}_{9}^{r}$•${(\frac{x}{2})}^{9-r}$•${(-\frac{2}{{x}^{2}})}^{r}$=(-2)r•${(\frac{1}{2})}^{9-r}$•${C}_{9}^{r}$•x9-3r
令9-3r=0,解得r=3;
∴展開(kāi)式的常數(shù)項(xiàng)為
T4=(-2)3•${(\frac{1}{2})}^{6}$•${C}_{9}^{3}$=-$\frac{21}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了求定積分與二項(xiàng)式展開(kāi)式的常數(shù)項(xiàng)問(wèn)題,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=1,AB=AD=2,E,F(xiàn)分別是棱AB,BC的中點(diǎn),證明A1,C1,F(xiàn),E四點(diǎn)共面,并求點(diǎn)B到平面A1EF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,不等式${x^2}cosC+2xsinC+\frac{3}{2}≥0$對(duì)一切實(shí)數(shù)x恒成立.
(1)求cosC的取值范圍;
(2)當(dāng)∠C取最大值,且△ABC的周長(zhǎng)為9時(shí),求△ABC面積的最大值,并指出面積取最大值時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知不等式組$\left\{\begin{array}{l}x+y+2≤0\\ x-y+4≥0\\ y≥a\end{array}\right.$,若z=2x-y的最大值為-1,則a值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖在直角梯形ABCP中,AP∥BC,AB=BC=$\frac{1}{2}$AP=2,D是AP的中點(diǎn),E,G分別為PC,CB的中點(diǎn),將△PCD沿CD折起,使得PD⊥平面ABCD,F(xiàn)為線段PD上一動(dòng)點(diǎn).當(dāng)二面角G-EF-D的大小為$\frac{π}{4}$時(shí),求FG與平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{ln({x+1})({x>0})}\\{\frac{1}{2}x+1({x≤0})}\end{array}}\right.$,如果存在實(shí)數(shù)s,t,其中s<t,使得f(s)=f(t),則t-s的取值范圍是( 。
A.[3-2ln2,2)B.[3-2ln2,e-1]C.[e-1,2]D.[0,e+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)=mx-alnx-m\;,\;\;g(x)=\frac{x}{{{e^{x-1}}}}$,其中m,a均為實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù).
(I)求函數(shù)g(x)的極值;
(II)設(shè)m=1,a<0,若對(duì)任意的x1,x2∈[3,4](x1≠x2),$|{f({x_2})-f({x_1})}|<|{\frac{1}{{g({x_2})}}-\frac{1}{{g({x_1})}}}|$恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.經(jīng)過(guò)拋物線$y=\frac{1}{4}x^2$的焦點(diǎn)與圓 x2-4x+y2=0相切的直線方程為( 。
A.225x-64y+4=0或x=0B.3x-4y+4=0
C.x=0D.3x-4y+4=0或x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在平面直角坐標(biāo)系中,定義點(diǎn)P(x1,y1)、Q(x2,y2)之間的直角距離為L(zhǎng)(P,Q)=|x1-x2|+|y1-y2|.
已知點(diǎn)A(x,1),B(1,2),C(5,3).
(1)若L(A,B)>L(A,C),求x的取值范圍;
(2)當(dāng)x∈R時(shí),不等式L(A,B)≤t+L(A,C)恒成立,求t的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案