已知函數(shù)f(x)=ax3+bx2+cx+d的單調(diào)遞減區(qū)間是(-1,3),且在x=1處的切線方程為:12x+y-13=0,求函數(shù)f(x)的解析式.
分析:由題意可知f'(x)<0的解集為(-1,3),即f'(x)=0的兩個(gè)根為-1和3,利用根與系數(shù)的關(guān)系建立等式,以及導(dǎo)數(shù)的幾何意義知在x=1處的導(dǎo)數(shù)等于切線的斜率,切點(diǎn)在函數(shù)f(x)的圖象上,建立方程組,解之即可求出函數(shù)f(x)的解析式.
解答:解:由已知:f'(x)=3ax2+2bx+c<0的解集為(-1,3),
3a>0
-1+3=-
2b
3a
(-1)×3=
c
3a
f′(1)=3a+2b+c=-12
f(1)=a+b+c+d=1
?
a=1
b=-3
c=-9
d=12
?f(x)=x3-3x2-9x+12
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及根與系數(shù)關(guān)系等基礎(chǔ)題知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊答案