【題目】如圖所示,在四棱錐中,底面是菱形,,與交于點(diǎn),底面,為的中點(diǎn),.
(1)求證: 平面;
(2)求異面直線與所成角的余弦值;
(3)求與平面所成角的正弦值.
【答案】(1)證明見詳解;(2);(3)
【解析】
(1)連接OF,可得OF為的中位線,OF∥DE,可得證明;
(2)連接C點(diǎn)與AD中點(diǎn)為x軸,CB為y軸,CE為z軸建立空間直角坐標(biāo)系,可得,的值,可得異面直線與所成角的余弦值;
(3)可得平面EBD的一個法向量為,可得與平面所成角的正弦值.
解:(1)
如圖,連接OF,因為底面是菱形,與交于點(diǎn),
可得O點(diǎn)為BD的中點(diǎn),又為的中點(diǎn),所以O(shè)F為的中位線,
可得OF∥DE,又,DE不在平面ACF內(nèi),
可得 平面;
(2)如圖連接C點(diǎn)與AD中點(diǎn)位x軸,CB為y軸,CE為z軸建立空間直角坐標(biāo)系,
設(shè)菱形的邊長為2,可得CE=2,
可得E(0,0,2),O(,,0),A(,1,0),F(0,1,1),
可得:,,設(shè)異面直線與所成角為,
可得,
(3)可得D (,-1,0),B(0,2,0),E(0,0,2),
可得,,設(shè)平面EBD的一個法向量為,
可得,,可得的值可為,由
可得與平面所成角的正弦值為
=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部隊在一次軍演中要先后執(zhí)行六項不同的任務(wù),要求是:任務(wù)必須排在前三項執(zhí)行,且執(zhí)行任務(wù)之后需立即執(zhí)行任務(wù),任務(wù)、相鄰,則不同的執(zhí)行方案共有______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的上頂點(diǎn)為A,左、右焦點(diǎn)分別為,,直線的斜率為,點(diǎn)在橢圓E上,其中P是橢圓上一動點(diǎn),Q點(diǎn)坐標(biāo)為.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)作直線l與x軸垂直,交橢圓于兩點(diǎn)(兩點(diǎn)均不與P點(diǎn)重合),直線,與x軸分別交于點(diǎn).求的最小值及取得最小值時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn),過作傾斜角互補(bǔ)的兩條不同直線、.
(1)求拋物線的方程及準(zhǔn)線方程;
(2)設(shè)直線、分別交拋物線于、兩點(diǎn)(均不與重合,如圖),記直線的斜率為正數(shù),若以線段為直徑的圓與拋物線的準(zhǔn)線相切,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,若動點(diǎn)滿足:.
(1)求動點(diǎn)的軌跡的方程;
(2)若點(diǎn),分別位于軸與軸的正半軸上,直線與曲線相交于,兩點(diǎn),且,請問在曲線上是否存在點(diǎn),使得四邊形(為坐標(biāo)原點(diǎn))為平行四邊形?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,,該橢圓與軸正半軸交于點(diǎn),且是邊長為的等邊三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)任作一直線交橢圓于,兩點(diǎn),平面上有一動點(diǎn),設(shè)直線,,的斜率分別為,,,且滿足,求動點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M為圓C:x2+y2-4x-14y+45=0上任意一點(diǎn),且點(diǎn)Q(-2,3).
(1)求|MQ|的最大值和最小值;
(2)若M(m,n),求的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的上下兩個焦點(diǎn)分別為, ,過點(diǎn)與軸垂直的直線交橢圓于、兩點(diǎn), 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點(diǎn),直線: 與軸交于點(diǎn),與橢圓交于, 兩個不同的點(diǎn),若存在實數(shù),使得,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com