19.函數(shù)f(x)的定義域?yàn)镽,且滿(mǎn)足f(x+4)=f(x),若f(x)=9,則f(8.5)等于( 。
A.-9B.9C.-3D.0

分析 利用函數(shù)的周期性及f(x)=9直接求解.

解答 解:∵函數(shù)f(x)的定義域?yàn)镽,且滿(mǎn)足f(x+4)=f(x),
f(x)=9,
∴f(8.5)=f(0.5)=9.
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.2015年高考結(jié)束,某學(xué)校對(duì)高三畢業(yè)生的高考成績(jī)進(jìn)行調(diào)查,高三年級(jí)共有1到6個(gè)班,從六個(gè)班隨機(jī)抽取50人,對(duì)于高考的考試成績(jī)達(dá)到自己的實(shí)際水平的情況,并將抽查的結(jié)果制成如下的表格,
班級(jí)123456
頻數(shù)610121264
達(dá)到366643
(1)根據(jù)上述的表格,估計(jì)該校高三學(xué)生2015年的高考成績(jī)達(dá)到自己的實(shí)際水平的概率;
(2)若從5班、6班的調(diào)查中各隨機(jī)選取2同學(xué)進(jìn)行調(diào)查,調(diào)查的4人中高考成績(jī)沒(méi)有達(dá)到實(shí)際水平的人數(shù)為ξ,求隨機(jī)ξ的分布列和數(shù)學(xué)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)=a+\frac{2}{{{2^x}-1}}(a∈R)$.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)是否存在實(shí)數(shù)a,使函數(shù)f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)m∈R,復(fù)數(shù)z=(2+i)m 2-3(1+i)m-2(1-i).
(1)若z為實(shí)數(shù),則m=1或2; 
(2)若z為純虛數(shù),則m=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)P1(x1,y1)、P2(x2,y2)、P3(x3,y3)在拋物線上,且2x3=x1+x2,則有( 。
A.|FP1|+|FP2|=|FP3|B.${|{F{P_1}}|^2}+{|{F{P_2}}|^2}={|{F{P_3}}|^2}$
C.2|FP3|=|FP1|+|FP2|D.${|{F{P_3}}|^2}=|{F{P_1}}|•|{F{P_2}}|$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下面四個(gè)命題中,
①?gòu)?fù)數(shù)z=a+bi,則實(shí)部、虛部分別是a,b;
②復(fù)數(shù)z滿(mǎn)足|z+1|=|z-2i|,則 z對(duì)應(yīng)的點(diǎn)集合構(gòu)成一條直線;
③由向量$\overrightarrow a$的性質(zhì)$|\overrightarrow a{|^2}={\overrightarrow a^2}$,可類(lèi)比得到復(fù)數(shù)z的性質(zhì)|z|2=z2
④i為虛數(shù)單位,則1+i+i2+…+i2016=1.
正確命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.三角函數(shù)值sin1,sin2,sin3的大小順序是( 。
A.sin1>sin2>sin3B.sin2>sin1>sin3C.sin1>sin3>sin2D.sin3>sin2>sin1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.對(duì)于函數(shù)f(x),若存在實(shí)數(shù)對(duì)(a,b),使得等式f(a+x)•f(a-x)=b對(duì)定義域中的每一個(gè)x都成立,則稱(chēng)函數(shù)f(x)是“(a,b)型函數(shù)”.
(1)判斷函數(shù)f(x)=4x是否為“(a,b)型函數(shù)”,并說(shuō)明理由;
(2)已知函數(shù)g(x)是“(1,4)型函數(shù)”,且當(dāng)x∈[0,1]時(shí),g(x)=x2-m(x-1)+1(m>0),若當(dāng)x∈[0,2]時(shí),都有1≤g(x)≤3成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知直線y=2x-1與拋物線C:x2=2py(p>0)相切
(1)求拋物線C的方程
(2)過(guò)拋物線C的焦點(diǎn)F作直線l交拋物線于A,B兩點(diǎn),若弦AB的中點(diǎn)的縱坐標(biāo)為$\frac{11}{4}$,求弦AB的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案