6.一個(gè)幾何體的三視圖如圖,則該幾何體的表面積為( 。
A.8+6$\sqrt{2}$B.10+8$\sqrt{2}$C.12+4$\sqrt{2}$D.14+2$\sqrt{2}$

分析 由三視圖知該幾何體是一個(gè)直四棱柱,由三視圖求出幾何元素的長度,由面積公式求出各個(gè)面的面積,加起來即可求出幾何體的表面積.

解答 解:根據(jù)三視圖可知幾何體是一個(gè)直四棱柱,
由俯視圖知底面是等腰梯形:
上底、下底分別是1、3,梯形的高是1,則腰長是$\sqrt{2}$,
且直四棱柱的高是2,
∴幾何體的表面積S=$2×\frac{1}{2}×(1+3)×1+3×2+1×2+2×\sqrt{2}×2$
=12+4$\sqrt{2}$,
故選:C.

點(diǎn)評(píng) 本題考查三視圖求幾何體的表面積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從集合{1,2,3,…,11}中任意取兩個(gè)元素作為橢圓$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1方程的m和n,則能構(gòu)成焦點(diǎn)在x軸上的橢圓個(gè)數(shù)為( 。
A.55B.90C.110D.121

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.直四棱柱ABCD-A1B1C1D1中,底面ABCD為菱形,且∠BAD=60°,A1A=AB,E為BB1延長線上的一點(diǎn),D1E⊥面D1AC.設(shè)AB=2.
(Ⅰ)求二面角E-AC-D1的大; 
(Ⅱ)在D1E上是否存在一點(diǎn)P,使A1P∥面EAC?若存在,求D1P:PE的值;不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,已知△ABC,D是AB的中點(diǎn),沿直線CD將△ACD折成△A1CD,所成二面角A1-CD-B的平面角為α,則( 。
A.∠A1CB≥αB.∠A1DB≤αC.∠A1DB≥αD.∠A1CB≤α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐S-ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一點(diǎn).
(Ⅰ)求證:平面EBD⊥平面SAC;
(Ⅱ)設(shè)SA=4,AB=2,求點(diǎn)A到平面SBD的距離;
(Ⅲ)設(shè)SA=4,AB=2,當(dāng)OE丄SC時(shí),求二面角E-BD-C余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,PB⊥面ABCD,BA=BD=$\sqrt{2}$,AD=2,E,F(xiàn)分別是棱AD,PC的中點(diǎn).
(1)證明:EF∥平面PAB;
(2)若二面角P-AD-B為60°,求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x+ex-a,g(x)=ln(x+2)-4ea-x,其中e為自然對(duì)數(shù)的底數(shù),若存在實(shí)數(shù)x0,使f(x0)-g(x0)=3成立,則實(shí)數(shù)a的值為( 。
A.-ln2-1B.-1+ln2C.-ln2D.ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為$\frac{8}{3}$,表面積為6+4$\sqrt{2}$+2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(x+1)lnx,g(x)=a(x-1)(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)對(duì)任意的x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:ln2•ln3…lnn>$\frac{{2}^{n}}{n(n+1)}$(n≥2,n∈N+).

查看答案和解析>>

同步練習(xí)冊(cè)答案