8.下列說法正確的是( 。
A.0•$\overrightarrow a$=0B.若$\overrightarrow a$⊥$\overrightarrow b$,則|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|
C.若$\overrightarrow a$•$\overrightarrow b$=0,則$\overrightarrow a$=$\overrightarrow 0$或$\overrightarrow b$=$\overrightarrow 0$D.若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c$,則$\overrightarrow b$=$\overrightarrow c$

分析 若0•$\overrightarrow a$=$\overrightarrow{0}$,可判斷A,若$\overrightarrow a$•$\overrightarrow b$=0,則$\overrightarrow a$=$\overrightarrow 0$或$\overrightarrow b$=$\overrightarrow{0}$,或$\overrightarrow a$⊥$\overrightarrow b$,則可判斷C,若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c$,則|$\overrightarrow a$|•|$\overrightarrow b$|cos<$\overrightarrow{a}$,$\overrightarrow$>=|$\overrightarrow a$|•|$\overrightarrow c$|cos<$\overrightarrow$,$\overrightarrow{c}$>,則判斷D

解答 解:若0•$\overrightarrow a$=0,因?yàn)?是一個數(shù),屬于標(biāo)量,與任何向量相乘應(yīng)該等于一個向量,是零向量,故A錯誤,
若$\overrightarrow a$⊥$\overrightarrow b$,則|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|,故B正確
若$\overrightarrow a$•$\overrightarrow b$=0,則$\overrightarrow a$=$\overrightarrow 0$或$\overrightarrow b$=$\overrightarrow{0}$,或$\overrightarrow a$⊥$\overrightarrow b$,故C錯誤,
若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c$,則|$\overrightarrow a$|•|$\overrightarrow b$|cos<$\overrightarrow{a}$,$\overrightarrow$>=|$\overrightarrow a$|•|$\overrightarrow c$|cos<$\overrightarrow$,$\overrightarrow{c}$>,不能得到$\overrightarrow b$=$\overrightarrow c$,故D錯誤,
故選:B

點(diǎn)評 本題考查了向量的基本概念,和向量的數(shù)量積,以及向量垂直的條件,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從4名男同學(xué)和3名女同學(xué)中選出3名參加某項(xiàng)活動,其中男女生都有的選法種數(shù)為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),點(diǎn)(0,b)到右焦點(diǎn)F的距離與它到直線l:x=4的距離比恰為離心率$\frac{1}{2}$,
(1)求橢圓C的方程;
(2)設(shè)P(1,$\frac{3}{2}$),AB是經(jīng)過右焦點(diǎn)F的任一弦(不經(jīng)過點(diǎn)P),設(shè)直線AB與l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3,問:是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求出λ的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)A={(m,n)|0<m<2,0<n<2},則任取(m,n)∈A,關(guān)于x的方程$\frac{m}{4}$x2+x+n=0有實(shí)根的概率為( 。
A.$\frac{1+2ln2}{4}$B.$\frac{1+ln2}{2}$C.$\frac{3-2ln2}{4}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,橢圓的中心在原點(diǎn),其左焦點(diǎn)F1與拋物線y2=-4x的焦點(diǎn)重合,過點(diǎn)F1的直線l與橢圓交于A,B兩點(diǎn),與拋物線交于C,D兩點(diǎn),當(dāng)直線l與x軸垂直時,$\frac{|CD|}{|AB|}$=2$\sqrt{2}$.
(1)求橢圓的方程;
(2)設(shè)F2是橢圓的右焦點(diǎn),求$\overrightarrow{{F_2}A}$•$\overrightarrow{{F_2}B}$的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)為(0,2),且離心率為$\frac{\sqrt{3}}{2}$.求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)x∈R,定義符號函數(shù)sgnx=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則函數(shù)f(x)=|x|sgnx的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知偶函數(shù)y=f(x)在區(qū)間(-∞,0]上是增函數(shù),下列不等式一定成立的是( 。
A.f(3)>f(-2)B.f(-π)>f(3)C.f(1)>f($\sqrt{2}$)D.f(a2+2)>f(a2+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“?x>0,使2x>3x”的否定是(  )
A.?x>0,使2x≤3xB.?x>0,使2x≤3xC.?x≤0,使2x≤3xD.?x≤0,使2x≤3x

查看答案和解析>>

同步練習(xí)冊答案