某高中共有學(xué)生3000名,各年級(jí)組成如下:
高一高二高三
女生653xy
男生647450z
已知在全校學(xué)生中隨機(jī)抽取一名,抽到高二年級(jí)女生的概率是0.15
(1)求x的值
(2)現(xiàn)用分層抽樣的方法在全校抽取30名學(xué)生,應(yīng)從高三抽取多少名
(3)設(shè)在(2)中抽取的總?cè)藬?shù)為m,其中女生4人,男生m-4人.從這m人中選派3人參加某項(xiàng)調(diào)查,求女生人數(shù)ξ的分布列及期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,分層抽樣方法
專題:概率與統(tǒng)計(jì)
分析:(1)利用概率性質(zhì)能求出x.
(2)利用分層抽樣方法能求出應(yīng)從高三抽取人數(shù).
(3)由(2)知m=8,那么男生4人,女生4人,ζ的可能取值為0,1,2,3,由此能求出女生人數(shù)ξ的分布列及期望.
解答: 解:(1)∵高中共有學(xué)生3000名,
在全校學(xué)生中隨機(jī)抽取一名,
抽到高二年級(jí)女生的概率是0.15,
∴x=3000×0.15=450.…2′
(2)∵653+647+450+450=2200得高三學(xué)生共有800名,…4′
∴由
30
3000
=
8
800

得應(yīng)從高三抽取8名.…6′
(3)由(2)知m=8,那么男生4人,女生4人
∴ζ的可能取值為0,1,2,3,…8′
p(ξ=0)=
C
3
4
C
3
8
=
1
14
,
p(ξ=1)=
C
1
4
C
2
4
C
3
8
=
3
7
,
p(ξ=2)=
C
2
4
C
1
4
C
3
8
=
3
7

p(ξ=3)=
C
3
4
C
3
8
=
1
14
,
∴ξ的分布列為:
ζ0123
p
1
14
3
7
3
7
1
14
…10′
E(ξ)=0×
1
14
+1×
3
7
+2×
3
7
+3×
1
14
=
3
2
.…12′
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,解題時(shí)要認(rèn)真審題,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠的某產(chǎn)品產(chǎn)量與單位成本的資料如表所示:
產(chǎn)量x千件24568
單位成本y元/件3040605070
請(qǐng)畫出散點(diǎn)圖并從圖中判斷產(chǎn)品產(chǎn)量與單位成本成什么樣的關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為
2
,且過(guò)點(diǎn)(4,-
10
).
①求雙曲線方程.
②若直線l:x-2y+6=0與雙曲線相交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PD=CD,AB=4,BC=3,E是PD的中點(diǎn).
(1)證明:PB∥平面ACE
(2)求二面角E-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)O,左焦點(diǎn)為F1(-1,0)的橢圓C1的左頂點(diǎn)為A,上頂點(diǎn)為B,F(xiàn)1到直線AB的距離為
7
7
|OB|.
(1)求橢圓C1的方程;
(2)若橢圓C1方程為:
x2
m2
+
y2
n2
=1(m>n>0),橢圓C2方程為:
x2
m2
+
y2
n2
=λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知C2是橢圓C1的3倍相似橢圓,若直線y=kx+b與兩橢圓C1、C2交于四點(diǎn)(依次為P、Q、R、S),且
PS
+
RS
=2
QS
,試求動(dòng)點(diǎn)E(k,b)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)(
2
,0),為其右焦點(diǎn),過(guò)F垂直于x軸的直線與橢圓相交所得的弦長(zhǎng)為2.
(1)求橢圓C的方程;
(2)直線l:y=kx+m(km≠0)與橢圓C相交于A,B兩點(diǎn),若線段AB中點(diǎn)P在直線x+2y=0上,O為坐標(biāo)原點(diǎn),求△OAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
eax
x
,其中e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若f(x)是[1,+∞)上的增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=
1
2
時(shí),求函數(shù)f(x)在[m,m+1](m>0)上的最小值;
(Ⅲ)求證:
n
i=1
1
i•(
e
)
i
7
2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若sinA=sinB=sinC.
(1)求角A,B,C的大小;
(2)若BC邊上的中線AM的長(zhǎng)為
7
,求三角形ABC的邊a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x,則f(log 
1
2
3)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案