【題目】已知函數(shù).
(1)函數(shù),討論的單調(diào)性;
(2)函數(shù)()的圖象在點(diǎn)處的切線為,證明:有且只有兩個(gè)點(diǎn)使得直線與函數(shù)的圖象也相切.
【答案】(1)當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;(2)證明見解析.
【解析】
(1)先對(duì)求導(dǎo),然后對(duì)a分類討論,求出單調(diào)區(qū)間即可;
(2)設(shè)(),可求出直線的方程為:,假設(shè)直線與的圖象也相切,切點(diǎn)為,所以直線的方程也可以寫作為:,又因?yàn)樾甭氏嗟瓤傻?/span>,即,由此可得,令(),然后結(jié)合零點(diǎn)存在性定理證明即可.
(1)(),所以,
①當(dāng)即時(shí):在上單調(diào)遞增;
②當(dāng)即時(shí):令有:,
所以:在單調(diào)遞減,在上單調(diào)遞增;
(2)設(shè)(),
,所以:,
所以直線的方程為:,即:,①
假設(shè)直線與的圖象也相切,切點(diǎn)為,
因?yàn)?/span>,所以:,
所以直線的方程也可以寫作為:,
又因?yàn)?/span>,即:,
所以直線的方程為:,即:,②
由①②有:,即:,
令(),
所以,
令,得:,
所以:在上單調(diào)遞減,在上單調(diào)遞增,
所以:,
又因?yàn)椋寒?dāng)時(shí),;當(dāng)時(shí),,
所以:在有且只有兩個(gè)實(shí)數(shù)根,
所以有且只有兩個(gè)點(diǎn)使得直線與函數(shù)的圖象也相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).設(shè)與的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線.
(1)求的普通方程;
(2)設(shè)為圓上任意一點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,己知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份需檢驗(yàn)血液.
(1)假設(shè)這份需檢驗(yàn)血液有且只有一份為陽性,從中依次不放回的抽取份血液,已知前兩次的血液均為陰性,求第次出現(xiàn)陽性血液的概率;
(2)現(xiàn)在對(duì)份血液進(jìn)行檢驗(yàn),假設(shè)每份血液的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,據(jù)統(tǒng)計(jì)每份血液是陽性結(jié)果的概率為,現(xiàn)在有以下兩種檢驗(yàn)方式:方式一:逐份檢驗(yàn);方式二:混合檢驗(yàn),將份血液分別取樣混合在一起檢驗(yàn)(假設(shè)血液混合后不影響血液的檢驗(yàn)).若檢驗(yàn)結(jié)果為陰性,則這份血液全為陰性,檢驗(yàn)結(jié)束;如果檢驗(yàn)結(jié)果為陽性,則這份血液中有為陽性的血液,為了明確這份血液究竟哪幾份為陽性,就要對(duì)這份再逐份檢驗(yàn).從檢驗(yàn)的次數(shù)分析,哪一種檢驗(yàn)方式更好一些,并說明理由.參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(1)求橢圓的標(biāo)準(zhǔn)方程和離心率;
(2)是否存在過點(diǎn)的直線與橢圓相交于,兩點(diǎn),且滿足.若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:,直線l:()過定點(diǎn)N,點(diǎn)P是圓M上的任意一點(diǎn),線段的垂直平分線和相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為曲線C.
(1)求曲線C的方程;
(2)直線l交C于A,B兩點(diǎn),D,B關(guān)于x軸對(duì)稱,直線與x軸交于點(diǎn)E,且點(diǎn)D為線段的中點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)P(0,-1),直線l與C的交點(diǎn)為M,N,線段MN的中點(diǎn)為Q,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,某市立足本地豐厚的文化旅游資源,以建設(shè)文化旅游強(qiáng)市,創(chuàng)建國(guó)家全域旅游示范市為引領(lǐng),堅(jiān)持以農(nóng)為本,以鄉(xiāng)為魂,以旅促農(nóng),多元化推動(dòng)產(chǎn)業(yè)化發(fā)展,文化和旅游扶貪工作卓有成效,精準(zhǔn)扶貧穩(wěn)步推進(jìn).該市旅游局為了更好的了解每年鄉(xiāng)村游人數(shù)的變化情況,繪制了如圖所示的柱狀圖.則下列說法錯(cuò)誤的是( )
0
A.鄉(xiāng)村游人數(shù)逐年上升
B.相比于前一年,2015年鄉(xiāng)村游人數(shù)增長(zhǎng)率大于2014年鄉(xiāng)村游人數(shù)增長(zhǎng)率
C.近8年鄉(xiāng)村游人數(shù)的平均數(shù)小于2016年鄉(xiāng)村游人數(shù)
D.從2016年開始,鄉(xiāng)村游人數(shù)明顯增多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店制作并銷售一款蛋糕,制作一個(gè)蛋糕成本4元,且以9元的價(jià)格出售,若當(dāng)天賣不完,剩下的則無償捐獻(xiàn)給飼料加工廠.根據(jù)以往100天的資料統(tǒng)計(jì),得到如表需求量表:
需求量/個(gè) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150] |
天數(shù) | 15 | 25 | 30 | 20 | 10 |
該蛋糕店一天制作了這款蛋糕X(X∈N)個(gè),以x(單位:個(gè),100≤x≤150,x∈N)表示當(dāng)天的市場(chǎng)需求量,T(單位:元)表示當(dāng)天出售這款蛋糕獲得的利潤(rùn).
(1)當(dāng)x=135時(shí),若X=130時(shí)獲得的利潤(rùn)為T1,X=140時(shí)獲得的利潤(rùn)為T2,試比較T1和T2的大。
(2)當(dāng)X=130時(shí),根據(jù)上表,從利潤(rùn)T不少于560元的天數(shù)中,按需求量分層抽樣抽取6天.
(i)求此時(shí)利潤(rùn)T關(guān)于市場(chǎng)需求量x的函數(shù)解析式,并求這6天中利潤(rùn)為650元的天數(shù);
(ii)再從這6天中抽取3天做進(jìn)一步分析,設(shè)這3天中利潤(rùn)為650元的天數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com