10.已知正三角形ABC的邊長(zhǎng)為a,面積為s,內(nèi)切圓的半徑為r,則r=$\frac{2s}{3a}$,類(lèi)比這一結(jié)論可知:正四面體S-ABC的底面的面積為S,內(nèi)切球的半徑為R,體積為V,則R=$\frac{3V}{4S}$.

分析 根據(jù)平面與空間之間的類(lèi)比推理,由點(diǎn)類(lèi)比點(diǎn)或直線(xiàn),由直線(xiàn) 類(lèi)比 直線(xiàn)或平面,由內(nèi)切圓類(lèi)比內(nèi)切球,由平面圖形面積類(lèi)比立體圖形的體積,結(jié)合求三角形的面積的方法類(lèi)比求四面體的體積即可.

解答 解:設(shè)四面體的內(nèi)切球的球心為O,
則球心O到四個(gè)面的距離都是R,
所以四面體的體積等于以O(shè)為頂點(diǎn),
分別以四個(gè)面為底面的4個(gè)三棱錐體積的和.
則四面體的體積為V=$\frac{1}{3}$•4SR
猜想:正四面體S-ABC的底面的面積為S,內(nèi)切球的半徑為R,體積為V,
則四面體ABCD的內(nèi)切球半徑R=$\frac{3V}{4S}$,
故答案:$\frac{3V}{4S}$.

點(diǎn)評(píng) 本題主要考查類(lèi)比推理.類(lèi)比推理是指依據(jù)兩類(lèi)數(shù)學(xué)對(duì)象的相似性,將已知的一類(lèi)數(shù)學(xué)對(duì)象的性質(zhì)類(lèi)比遷移到另一類(lèi)數(shù)學(xué)對(duì)象上去.一般步驟:①找出兩類(lèi)事物之間的相似性或者一致性.②用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(或猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(普通班做)二項(xiàng)式(x-$\frac{1}{x}$)6的展開(kāi)式的常數(shù)項(xiàng)是-20.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.我們?cè)趯W(xué)習(xí)立體幾何推導(dǎo)球的體積公式時(shí),用到了祖日恒原理:即兩個(gè)等高的幾何體,被等高的截面所截,若所截得的面積總相等,那么這兩個(gè)幾何體的體積相等.類(lèi)比此方法:求雙曲線(xiàn)$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0),與x軸,直線(xiàn)y=h(h>0)及漸近線(xiàn)$y=\frac{a}x$所圍成的陰影部分(如圖)繞y軸旋轉(zhuǎn)一周所得的幾何體的體積a2hπ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某校安排四個(gè)班到三個(gè)工廠(chǎng)進(jìn)行社會(huì)實(shí)踐,每個(gè)班去一個(gè)工廠(chǎng),每個(gè)工廠(chǎng)至少安排一個(gè)班,不同的安排方法共有(  )
A.24B.36C.48D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x3+bx2+2x-1(b∈R).
(1)設(shè)g(x)=$\frac{f(x)+1}{{x}^{2}}$,若函數(shù)g(x)在(0,+∞)上沒(méi)有零點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)若對(duì)?x∈[1,2],均?t∈[1,2],使得et-lnt-4≤f(x)-2x,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.三棱錐A-PBC中,D是線(xiàn)段PC上一點(diǎn),且AD⊥面BPC,AC=2,BC=3,AB=$\sqrt{7}$,E是BC上一點(diǎn),且CE=1.
(1)求證:BC⊥面ADE;
(2)若∠ACP和∠BCP互余,求直線(xiàn)AB和面BPC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知數(shù)列{an},滿(mǎn)足a1=0,an+1=$\frac{n+2}{n}$an$+\frac{1}{n}$,若不等式$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<m恒成立,則整數(shù)m的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x3+ax2+bx+a2(ab∈R)
(1)若函數(shù)f(x)在x=1處有極值10,求b的值;
(2)若對(duì)任意a∈[-4,+∞),f(x)在x∈[0,2]上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在區(qū)間[1,5]和[2,4]分別取一個(gè)數(shù),記為a,b,則方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦點(diǎn)在y軸上且離心率小于$\frac{{\sqrt{3}}}{2}$的橢圓的概率為( 。
A.$\frac{3}{8}$B.$\frac{15}{32}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案