【題目】已知四邊形為直角梯形,,,,中點(diǎn),交于點(diǎn),沿將四邊形折起,連接

(1)求證:平面;

(2)若平面平面

(I)求二面角的平面角的大。

(II)線段上是否存在點(diǎn),使平面,若存在,求出的值,若不存在,請說明理由.

【答案】(1)見解析;(2)見解析;(3).

【解析】【試題分析】(1)依據(jù)題設(shè)條件,運(yùn)用線面平行的判定定理推證;(2)依據(jù)題設(shè)建立空間直角坐標(biāo)系,運(yùn)用向量的坐標(biāo)形式進(jìn)行分析探求。

(1)證明:連結(jié),則中點(diǎn),設(shè)中點(diǎn),連結(jié),則,且

由已知

,所以四邊形為平行四邊形.

,即

平面平面,

所以平面

(2)由已知為邊長為2的正方形,

,

因?yàn)槠矫?/span>平面,又,

兩兩垂直.

為原點(diǎn),分別為軸,軸,軸建立空間直角坐標(biāo)系,

(I)可求平面法向量為,

平面法向量為,

,

所以二面角的平面角的大小為

(II)假設(shè)線段上是否存在點(diǎn),使平面,設(shè)),

,

平面,則,可求

所以線段上存在點(diǎn),使平面,且

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015男籃亞錦賽決賽階段,中國男籃以9連勝的不敗戰(zhàn)績贏得第28屆亞錦賽冠軍,同時(shí)拿到亞洲唯一1張直通里約奧運(yùn)會(huì)的入場券,賽后,中國男籃主力易建聯(lián)榮膺本屆亞錦賽(最有價(jià)值球員),下表是易建聯(lián)在這9場比賽中投籃的統(tǒng)計(jì)數(shù)據(jù).

注:(1)表中表示出手次命中次;

(2)(真實(shí)得分率)是衡量球員進(jìn)攻的效率,其計(jì)算公式為:

(1)從上述9場比賽中隨機(jī)選擇一場,求易建聯(lián)在該場比賽中超過50%的概率;

(2)從上述9場比賽中隨機(jī)選擇一場,求易建聯(lián)在該場比賽中至少有一場超過60%的概率;

(3)用來表示易建聯(lián)某場的得分,用來表示中國隊(duì)該場的總分,畫出散點(diǎn)圖如圖所示,請根據(jù)散點(diǎn)圖判斷之間是否具有線性相關(guān)關(guān)系?結(jié)合實(shí)際簡單說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)學(xué)生在一次競賽中要回答道題是這樣產(chǎn)生的道物理題中隨機(jī)抽取;道化學(xué)題中隨機(jī)抽取;道生物題中隨機(jī)抽取.使用合適的方法確定這個(gè)學(xué)生所要回答的三門學(xué)科的題的序號(hào)(物理題的編號(hào)為,化學(xué)題的編號(hào)為,生物題的編號(hào)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l、m,平面α、β,下列命題正確的是 (  )

A. lβ,lααβ

B. lβ,mβ,lαmααβ

C. lm,lα,mβαβ

D. lβ,mβ,lα,mα,lmMαβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2015高考天津,文20】已知函數(shù)

I)求的單調(diào)區(qū)間;

II)設(shè)曲線軸正半軸的交點(diǎn)為P,曲線在點(diǎn)P處的切線方程為,求證:對(duì)于任意的正實(shí)數(shù),都有;

III)若方程有兩個(gè)正實(shí)數(shù)根,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對(duì)理科題的概率均為,答對(duì)文科題的概率均為,若每題答對(duì)得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷某種“上海世博會(huì)”紀(jì)念品,每件按30元銷售,可獲利50%,設(shè)每件紀(jì)念品的成本為a元.

(1)試求a的值;

(2)公司在試銷過程中進(jìn)行了市場調(diào)查,發(fā)現(xiàn)銷售量y(件)與每件售價(jià)x(元)滿足關(guān)系y=-10x+800.設(shè)每天銷售利潤為W(元),求每天銷售利潤W(元)與每件售價(jià)x(元)之間的函數(shù)解析式;當(dāng)每件售價(jià)為多少時(shí),每天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2014福建,文22】已知函數(shù)為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.

(1)的值及函數(shù)的極值;

(2)證明:當(dāng)時(shí),

(3)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng)時(shí),恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上的點(diǎn),直線為坐標(biāo)原點(diǎn))的斜率之積為.若動(dòng)點(diǎn)滿足,試探究是否存在兩個(gè)定點(diǎn)使得為定值?若存在,的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

同步練習(xí)冊答案