求和:
【答案】分析:本題即求(1+x)r+(1+x)r+1+(1+x)r+2+…+(1+x)n 的展開(kāi)式中xr的系數(shù).而 (1+x)r+(1+x)r+1+(1+x)r+2+…+(1+x)n=,
故本題即求(1+x)n+1的展開(kāi)式中xr+1的系數(shù),由此可得結(jié)果.
解答:解:由于  為(1+x)r+(1+x)r+1+(1+x)r+2+…+(1+x)n 的展開(kāi)式中xr的系數(shù).
而 (1+x)r+(1+x)r+1+(1+x)r+2+…+(1+x)n=
故本題即求(1+x)n+1的展開(kāi)式中xr+1的系數(shù),顯然,xr+1的系數(shù)為 ,
=
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,等比數(shù)列的求和公式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(請(qǐng)注意求和符號(hào):f(k)+f(k+1)+f(k+2)+…+f(n)=
n
i=k
f(i)
,其中k,n為正整數(shù)且k≤n)
已知常數(shù)a為正實(shí)數(shù),曲線(xiàn)Cn:y=
nx
在其上一點(diǎn)Pn(xn,yn)處的切線(xiàn)Ln
總經(jīng)過(guò)定點(diǎn)(-a,0)(n∈N*
(1)求證:點(diǎn)列:P1,P2,…,Pn在同一直線(xiàn)上
(2)求證:ln(n+1)<
n
i=1
a
yi
<2
n
(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、已知集合M={x|1≤x≤4,x∈N},對(duì)它的非空子集A,可將A中每個(gè)元素k,都乘以(-1)k再求和(如A={1,2,4},可求得和為(-1)1•1+(-1)2•2+(-1)4•4=5),則對(duì)M的所有非空子集,這些和的總和是
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}(n為正整數(shù))是首項(xiàng)是a1,公比為q的等比數(shù)列.
(1)求和:a1C20-a2C21+a3C22,a1C30-a2C31+a3C32-a4C33
(2)由(1)的結(jié)果歸納概括出關(guān)于正整數(shù)n的一個(gè)結(jié)論,并加以證明.
(3)設(shè)q≠1,Sn是等比數(shù)列{an}的前n項(xiàng)和,求:S1Cn0-S2Cn1+S3Cn2-S4Cn3+…+(-1)nSn+1Cnn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
x
a(x+2)
,方程f(x)=x有唯一解,已知f(xn)=xn+1(n∈N*),且f(x1)=
1
1005

(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)若an=
4-4017xn
xn
,且bn=
a
2
n+1
+
a
2
n
2an+1an
(n∈N*)
,求和Sn=b1+b2+…+bn
(3)問(wèn):是否存在最小整數(shù)m,使得對(duì)任意n∈N*,有f(xn)<
m
2010
成立,若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)對(duì)任意x∈R都有f(x)+f(1-x)=
1
2
成立.
(Ⅰ)求和f(
1
n
)
+f(
n-1
n
)
(n∈N*)的值;
(Ⅱ)數(shù)列{an}滿(mǎn)足條件;an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
,試證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案