在可行域內(nèi)任取一點(diǎn),規(guī)則為如圖所示的流程圖,則能輸出數(shù)對(s,t)的概率是(  )
A、
5
B、
π
4
C、
3
4
D、
π
6
考點(diǎn):二元一次不等式(組)與平面區(qū)域,程序框圖
專題:不等式的解法及應(yīng)用,算法和程序框圖
分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是計(jì)算當(dāng)
-1≤x+y≤1
-1≤x-y≤1
時,滿足條件x2+y2
1
2
的概率.
解答: 解:滿足條件
-1≤x+y≤1
-1≤x-y≤1
的幾何圖形如下圖中矩形所示,
滿足條件x2+y2
1
2
的幾何圖形如下圖中陰影所示,
其中矩形面積為:S矩形=
2
×
2
=2,
陰影部分的面積為:S陰影=π(
2
2
)2
=
π
2

則能輸出數(shù)對(x,y)的概率P=
S陰影
S矩形
=
π
4

故選:B.
點(diǎn)評:根據(jù)流程圖(或偽代碼)寫程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,其處理方法是::①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計(jì)算的類型,又要分析出參與計(jì)算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次方程f(x)=ax2-4bx+1
(1)設(shè)集合P={1,2,3},Q={-1,1,2,3,4},分別從集合P,Q中隨機(jī)取一個數(shù)為a和b,求函數(shù)y=f(x)在[1,+∞)上是增函數(shù)的概率
(2)設(shè)點(diǎn)(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),設(shè)A={f(1)<0},求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn=
3
2
(an-1),其中{an}均有前n項(xiàng)和Sn,{bn}滿足bn=
1
4
bn-1-
3
4
(n≥2),b1=3.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn=anlog2(bn+1)求{cn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x>1時,不等式2x+
3
x-1
≥a恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,|
AB
|=2,|
AC
|=1,∠BAC=120°,若
BD
=2
DC
,則 
AD
BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=sinx+
3
cosx的周期,最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求12+32+52+…+n2≥2015的最小正整數(shù)n的程序框圖如圖所示,則?處應(yīng)填( 。
A、nB、n-2
C、n-4D、n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動點(diǎn)P(x,0),定點(diǎn)A(0,2),B(4,1),則|PA|+|PB|的最小值為( 。
A、
17
B、3
2
C、4
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象過點(diǎn)(9,
1
3
)      
(1)求f(x)的解析式;
(2)求f(25)的值;        
(3)若f(a)=b(a,b>0),則a用b可表示成什么?

查看答案和解析>>

同步練習(xí)冊答案