【題目】已知函數f(x)=(2x﹣)x,則下列結論中正確的是( 。
A.若﹣3≤m<n,則f(m)<f(n)
B.若m<n≤0,則f(m)<f(n)
C.若f(m)<f(n),則m2<n2
D.若f(m)<f(n),則m3<n3
【答案】C
【解析】函數f(x)=(2x﹣)x的定義域為R,
f(﹣x)=(2﹣x﹣2x)(﹣x)=x(2x﹣2﹣x)=f(x),
則f(x)為偶函數,
f(x)的導數f′(x)=x(2xln2+2﹣xln2)+2x﹣2﹣x ,
當x>0時,2x>1,0<2﹣x<1,則f′(x)>0,f(x)在(0,+∞)遞增,
則由偶函數的性質,可得f(x)在(﹣∞,0]上遞減.
對于A,若﹣3≤m<n,有f(m)>f(n),A不正確;
對于B,若m<n≤0,則f(m)>f(n),B不正確;
對于C,若f(m)<f(n),即為f(|m|)<f(|n|),則有|m|<|n|,
即有m2<n2 , C正確;
對于D,若f(m)<f(n),則m,n不好比較大小,則D不正確.
故選C.
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=AD= BC, = .
(1)求證:DE⊥平面PAC;
(2)若直線PE與平面PAC所成角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}共有5項,其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,則滿足條件的不同數列的個數為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數(其中a∈R).
(1)討論函數f(x)的奇偶性,并說明理由.
(2)若,試判斷函數f(x)在區(qū)間[1,+∞)上的單調性,并用函數單調性定義給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義域為R的函數f(x)滿足:對于任意的實數x,y都有f(x+y)=f(x)+f(y)成立,且當x<0時,f(x)>0恒成立,且nf(x)=f(nx).(n是一個給定的正整數).
(1)判斷函數f(x)的奇偶性,并證明你的結論;
(2)證明f(x)為減函數;若函數f(x)在[-2,5]上總有f(x)≤10成立,試確定f(1)應滿足的條件;
(3)當a<0時,解關于x的不等式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱柱ABCD-A1B1C1D1中,,平面BB1C1C底面ABCD,點、F分別是線段、BC的中點.
(1)求證:AF//平面;
(2)求證:平面BB1C1C⊥平面.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列五個命題:
①函數f(x)=2a2x-1-1的圖象過定點(,-1);
②已知函數f(x)是定義在R上的奇函數,當x≥0時,f(x)=x(x+1),若f(a)=-2則實數a=-1或2.
③若loga>1,則a的取值范圍是(,1);
④若對于任意x∈R都f(x)=f(4-x)成立,則f(x)圖象關于直線x=2對稱;
⑤對于函數f(x)=lnx,其定義域內任意x1≠x2都滿足f()≥
其中所有正確命題的序號是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com