【題目】選修4—4:坐標(biāo)系與參數(shù)方程。
在平面直角坐標(biāo)系xOy中,已知曲線,以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線,試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(2)在曲線上求一點(diǎn)P,使點(diǎn)P到直線的距離最大,并求出此最大值.
【答案】(1)直線:,曲線:;(2)點(diǎn)P(),此時(shí).
【解析】
試題分析:(1)由公式可化直線的極坐標(biāo)方程為直角坐標(biāo)方程,設(shè)曲線點(diǎn)坐標(biāo)為與之對(duì)應(yīng)的曲線上的點(diǎn)為,則,解得代入曲線的方程可得方程;(2)由參數(shù)方程要設(shè)設(shè)點(diǎn)P的坐標(biāo),由點(diǎn)P到直線的距離公式求得距離,由兩角和與差的正弦公式及正弦函數(shù)的性質(zhì)可得最大值.
試題解析:(1) 由題意知,直線的直角坐標(biāo)方程為:,
∵曲線的直角坐標(biāo)方程為:,
∴曲線的參數(shù)方程為:.
(2)設(shè)點(diǎn)P的坐標(biāo),則點(diǎn)P到直線的距離為:
,
∴當(dāng)sin(600-θ)=-1時(shí),點(diǎn)P(),此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列框圖中,可作為流程圖的是( )
A.整數(shù)指數(shù)冪→有理指數(shù)冪→無理指數(shù)冪
B.隨機(jī)事件→頻率→概率
C.入庫→找書→閱覽→借書→出庫→還書
D.推理→圖像與性質(zhì)→定義
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間將10名技工平均分為甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每名技工加工零件若干,其中合格零件的個(gè)數(shù)如下表:
1號(hào) | 2號(hào) | 3號(hào) | 4號(hào) | 5號(hào) | |
甲組 | 4 | 5 | 7 | 9 | 10 |
乙組 | 5 | 6 | 7 | 8 | 9 |
(1)分別求出甲、乙兩組技工在單位時(shí)間內(nèi)完成合格零件的平均數(shù)及方差,并由此分析兩組技工的技術(shù)水平;
(2)質(zhì)檢部門從該車間甲、乙兩組中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測,若兩人完成合格零件個(gè)數(shù)之和超過12件,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,其焦點(diǎn)為.
(1)若點(diǎn),求以為中點(diǎn)的拋物線的弦所在的直線方程;
(2)若互相垂直的直線都經(jīng)過拋物線的焦點(diǎn),且與拋物線相交于兩點(diǎn)和兩點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x)萬元,當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=x2+10x(萬元);當(dāng)年產(chǎn)量不少于80千件時(shí),C(x)=51x+-1 450(萬元).通過市場分析,若每件售價(jià)為500元時(shí),該廠年內(nèi)生產(chǎn)的商品能全部銷售完.
(1)寫出年利潤L(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價(jià)40元,兩側(cè)墻砌磚,每米長造價(jià)45元,頂部每平方米造價(jià)20元。
(1)設(shè)鐵柵長為米,一堵磚墻長為米,求函數(shù)的解析式;
(2)為使倉庫總面積達(dá)到最大,正面鐵柵應(yīng)設(shè)計(jì)為多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
函數(shù).
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若,判斷的奇偶性;
(3)是否存在實(shí)數(shù),使函數(shù)在遞增,并且最大值為1,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的最小值為,且.
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是兩條不同直線,,是兩個(gè)不同平面,則下列命題正確的是( )
A.若,垂直于同一平面,則與平行
B.若,平行于同一平面,則與平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若,不平行,則與不可能垂直于同一平面
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com