8.實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+2y≤4}\\{x+y≥1}\\{y≥0}\end{array}\right.$,則3x+5y的最大值為( 。
A.12B.9C.8D.3

分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.

解答 解:作出不等式對應(yīng)的平面區(qū)域(陰影部分),
設(shè)z=3x+5y,得y=$-\frac{3}{5}x+\frac{z}{5}$,
平移直線y=$-\frac{3}{5}x+\frac{z}{5}$,由圖象可知當(dāng)直線y=$-\frac{3}{5}x+\frac{z}{5}$,經(jīng)過點C(4,0)時,直線y=$-\frac{3}{5}x+\frac{z}{5}$的截距最大,此時z最大.
此時z的最大值為z=3×4-0=12,
故選:A.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)y=sin(ωx-2)(ω>0)的最小正周期為$\frac{2π}{3}$,要得到y(tǒng)=sin(ωx-2)的圖象,只要將函數(shù)y=sinωx的圖象( 。
A.向左平移2個單位B.向右平移2個單位
C.向左平移$\frac{2}{3}$個單位D.向右平移$\frac{2}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.圓C1:x2+y2+2ax+a2-4=0(a≥0)與圓C2:x2+y2-2by+b2-1=0(b≥0)外切,則$\frac{a+6}$最大值為$\frac{1}{2}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,滿足“f(xy)=f(x)+f(y)”的單調(diào)遞增函數(shù)是( 。
A.f(x)=log${\;}_{\frac{1}{2}}$xB.f(x)=x3C.f(x)=2xD.f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左、右焦點分別為F1,F(xiàn)2,右焦點F2與拋物線y2=4$\sqrt{34}$x的焦點相同,離心率為e=$\frac{\sqrt{34}}{5}$,若雙曲線左支上有一點M到右焦點F2距離為18,N為MF2的中點,O為坐標原點,則|NO|等于( 。
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若規(guī)定E={a1,a2,…,a10}的子集{at1,at2,…,ak}為E的第k個子集,其中$k={2^{{t_1}-1}}+{2^{{t_2}-1}}+…+{2^{{t_m}-1}}$,則E的第211個子集是{a1,a2,a5,a7,a8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知定義在區(qū)間$[{-\frac{π}{4},\frac{π}{4}}]$上的函數(shù)f(x)=2asin2x+b的最大值為1,最小值為-5,則實數(shù)a+b的值為-$\frac{1}{2}$或-$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-ax2-bx(a,b∈R),g(x)=$\frac{2x-2}{x+1}$-lnx.
(1)當(dāng)a=-1時,f(x)與g(x)在定義域上的單調(diào)性相反,求b的取值范圍;
(2)當(dāng)a,b都為0時,斜率為k的直線與曲線y=f(x)交A(x1,y1),B(x2,y2)(x1<x2)于兩點,求證:x1<$\frac{1}{k}<{x_2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=-4x3+kx,對任意的x∈[-1,1],總有f(x)≤1,則實數(shù)k的取值為3.

查看答案和解析>>

同步練習(xí)冊答案